Skip to main content
18.118.163.176

Towards a Continuous Manufacturing Process of Protein-Loaded Polymeric Nanoparticle Powders

By Schiller, Stefan; Hanefeld, Andrea; Schneider, Marc; Lehr, Claus-Michael

Published on CMKC

Abstract

To develop a scalable and efficient process suitable for the continuous manufacturing of poly(lactic-co-glycolic acid) (PLGA) nanoparticles containing ovalbumin as the model protein. PLGA nanoparticles were prepared using a double emulsification spray-drying method. Emulsions were prepared using a focused ultrasound transducer equipped with a flow cell. Either poly(vinyl alcohol) (PVA) or poloxamer 407 (P-407) was used as a stabilizer. Aliquots of the emulsions were blended with different matrix excipients and spray dried, and the yield and size of the resuspended nanoparticles was determined and compared against solvent displacement. Nanoparticle sizes of spray-dried PLGA/PVA emulsions were independent of the matrix excipient and comparable with sizes from the solvent displacement method. The yield of the resuspended nanoparticles was highest for emulsions containing trehalose and leucine (79%). Spray drying of PLGA/P-407 emulsions led to agglomerated nanoparticles independent of the matrix excipient. PLGA/P-407 nanoparticles pre-formed by solvent displacement could be spray dried with limited agglomeration when PVA was added as an additional stabilizer. A comparably high and economically interesting nanoparticle yield could be achieved with a process suitable for continuous manufacturing. Further studies are needed to understand the robustness of a continuous process at commercial scale.

Journal

AAPS PharmSciTech. Volume 21, 7, 2020, 269

DOI

10.1208/s12249-020-01814-w

Type of publication

Peer-reviewed journal

Affiliations

  • Saarland University
  • Merck Healthcare KGaA

Article Classification

Research article

Classification Areas

  • Oral solid dose

Tags