Skip to main content
Join CMKC members for a complimentary virtual event on December 10, 11am ET: CM MythBusters: https://bit.ly/3YXJynA. This is a fantastic opportunity to connect, collaborate, and debunk common myths about continuous manufacturing!
18.119.143.45

Double-Track Electrochemical Green Approach for Simultaneous Dissolution Profiling of Naproxen Sodium and Diphenhydramine Hydrochloride

By Shehata, MA; Fawaz, EMAbd; El-Rahman, MK; Abdel-Moety, EM

Published on

Abstract

Acquisition of the dissolution profiles of more than single active ingredient in a multi-analyte pharmaceutical formulation is a mandatory manufacturing practice that is dominated by utilization of the off-line separation-based chromatographic methods. This contribution adopts a new "Double-Track" approach with the ultimate goal of advancing the in-line potentiometric sensors to their most effective applicability for simultaneous acquisition of the dissolution profiles of two active ingredients in a binary pharmaceutical formulation. The unique abilities of these sensors for real-time measurements is the key driver for adoption of "green analytical chemistry" (GAC) principles aiming to expand the application of ecofriendly analytical methods With the aim of performing a side-by-side comparison, this work investigates the degree of adherence of ISEs to the 12 principles of GAC in multicomponent dissolution profiling with respect to the HPLC. For the proof of concept, a binary mixture of naproxen sodium (NAPR) and diphenhydramine hydrochloride (DIPH) marketed as Aleve pm tablets was selected as a model for which dissolution profiles were attained by two techniques. The first "Double-Track" in-line strategy depends on dipping two highly integrated membrane sensors for continuous monitoring of the dissolution of each active pharmaceutical ingredient (API) by tracing the e.m.f change over the time scale. For the determination of NAPR, sensor I was developed using tridodecyl methyl ammonium chloride as an anion exchanger, while sensor II was developed for the determination of DIPH using potassium tetrakis (4-chlorophenyl) borate as a cation exchanger. The second off-line strategy utilizes a separation-based HPLC method via off-line tracking the increase of peak area by UV detection at 220 nm over time using a mobile phase of acetonitrile: water (90:10) pH 3. The advantages of the newly introduced "Double-Track" approach regarding GAC principles are highlighted, and the merits of these benign real-time analyzers (ISEs) that can deliver equivalent analytical results as HPLC while significantly reducing solvent consumption/waste generation are described. (C) 2017 Elsevier B.V. All rights reserved.

Journal

Journal of Pharmaceutical and Biomedical Analysis. Volume 146, 2017, 179-187

DOI

10.1016/j.jpba.2017.08.041

Type of publication

Peer-reviewed journal

Affiliations

  • Cairo University

Article Classification

Research Article

Classification Areas

  • API

Tags