Skip to main content
Prepare for an exciting September! Each week, we'll examine the latest trends in PAT, offering fresh insights straight from recent conferences. Your perspective matters, so we encourage you to share your thoughts as well. Stay informed, stay engaged, and let's explore these cutting-edge developments together. https://bit.ly/3Xw0X7k
52.14.151.45

Integrated twin-screw wet granulation, continuous vibrational fluid drying and milling: A fully continuous powder to granule line

By Fulop, G.; Domokos, A.; Galata, D.; Szabo, E.; Gyurkes, M.; Szabo, B.; Farkas, A.; Madarasz, L.; Demuth, B.; Lender, T.; Nagy, T.; Kovacs-Kiss, D.; Van der Gucht, f; Marosi, G.; Nagy, Z. K.

Published on CMKC

Abstract

Highly homogeneous low-dose (50 mu g) tablets were produced incorporating perfectly free-flowing granules prepared by a fully integrated Continuous Manufacturing (CM) line. The adopted CM equipment consisted of a Twin-Screw Wet Granulator (TSWG), a Continuous Fluid Bed Dryer (CFBD) and a Continuous Sieving (CS) unit. Throughout the experiments a pre-blend of lactose-monohydrate and corn starch was gravimetrically dosed with 1 kg/h into the TSWG, where they were successfully granulated with the drug containing water-based PVPK30 solution. The wet mass was subsequently dried in the CFBD on a vibratory conveyor belt and finally sieved in the milling unit. Granule production efficiency was maximized by determining the minimal Liquid-to-Solid (L/S) ratio (0.11). Design of Experiments (DoE) were carried out in order to evaluate the influence of the drying process parameters of the CFBD on the Loss-on-Drying (LOD) results. The manufactured granules were compressed into tablets by an industrial tablet rotary press with excellent API homogeneity (RSD < 3%). Significant scale-up was realized with the CM line by increasing the throughput rate to 10 kg/h. The manufactured granules yielded very similar results to the previous small-scale granulation runs. API homogeneity was demonstrated (RSD < 2%) with Blend Uniformity Analysis (BUA). The efficiency of TSWG granulation was compared to High-Shear Granulation (HSG) with the same L/S ratio. The final results have demonstrated that both the liquid distribution and more importantly API homogeneity was better in case of the TSWG granulation (RSD 1.3% vs. 4.5%).

Journal

International Journal of Pharmaceutics. Volume 594, 2021, 120126

DOI

10.1016/j.ijpharm.2020.120126

Type of publication

Peer-reviewed journal

Affiliations

  • Budapest University of Technology and Economics

Article Classification

Research article

Classification Areas

  • Oral solid dose
  • Process and material characterization

Tags