Skip to main content
Join CMKC members for a complimentary virtual event on December 10, 11am ET: CM MythBusters: https://bit.ly/3YXJynA. This is a fantastic opportunity to connect, collaborate, and debunk common myths about continuous manufacturing!
3.147.27.129

Resources: All

Find a resource
  1. crystallization x
  2. regulatory x
  3. control x
  4. processanalyticaltechnology x
  5. reviewarticle x
  1. An audit of pharmaceutical continuous manufacturing regulatory submissions and outcomes in the US

    20 Nov 2024 | Peer-reviewed journal | Contributor(s): Adam C. Fisher, William Liu, Andreas Schick, Mahesh Ramanadham, Sharmista Chatterjee, Raphael Brykman, Sau L. Lee, Steven Kozlowski, Ashley B. Boam, Stelios C. Tsinontides, Michael Kopcha

    Continuous manufacturing (CM) sends materials directly and continuously to the next step of a process, eliminating hold times and reducing processing times. The potential benefits of CM include improved product quality, reduced waste, lower costs, and increased manufacturing flexibility and...

  2. The role of digital twins in driving sustainability

    29 Oct 2024 | Peer-reviewed journal | Contributor(s): Deborah McElhone, Barrie Cassey, Kamal Abu-Hassan

    As the pharmaceutical sector endeavours to become more sustainable, we hear how digital twins – virtual replicas of systems or products that can help predict performance – are supporting the industry in its efforts.

  3. Continuous manufacturing: Changing the paradigm in the pharmaceutical manufacturing sector

    23 Sep 2024 | Magazine | Contributor(s): Indu Bhushan

    The author explains how continuous manufacturing is reshaping pharmaceutical production

  4. The Rise of Continuous Manufacturing in Pharma

    13 Aug 2024 | Website | Contributor(s): Editorial Team

    "Mr Indu Bhushan, CEO and Director of STEERLife shares his insights on the transformative journey of continuous manufacturing, and the advanced technologies that have propelled this paradigm shift. He also throws light on how continuous manufacturing has accelerated drug development...

  5. Matrix-assisted cocrystallization (MAC) simultaneous production and formulation of pharmaceutical cocrystals by hot-melt extrusion

    23 Jul 2024 | Peer-reviewed journal | Contributor(s): Boksa, Kevin, Otte, Andrew, Pinal, Rodolfo

    A novel method for the simultaneous production and formulation of pharmaceutical cocrystals, matrix-assisted cocrystallization (MAC), is presented. Hot-melt extrusion (HME) is used to create cocrystals by coprocessing the drug and coformer in the presence of a matrix material. Carbamazepine...

  6. Continuous Manufacturing in the Pharmaceutical Industry: Enhancing Drug Production

    23 Jul 2024 | Website | Contributor(s): Timmerman, Siebe

    A significant shift towards continuous manufacturing (CM) is currently underway in the pharmaceutical industry. Unlike the more commonly used batch processing, CM operates continuously. This method potentially offers increased efficiency, agility, and flexibility in the manufacturing of drug...

  7. Process analytics for the new era of continuous RNA manufacturing

    23 Jul 2024 | Website | Contributor(s): Botonjic-Sehic, Edita

    In this article, Edita Botonjic-Sehic, Head of Process Analytics and Data Science at ReciBioPharm, examines the need for a digitally controlled continuous manufacturing process to correct the shortcomings of the current standard of batch processing. She highlights the critical role in-line...

  8. Axial Chirality in the Sotorasib Drug Substance, Part 2: Leveraging a High-Temperature Thermal Racemization to Recycle the Classical Resolution Waste Stream

    25 Jun 2024 | Peer-reviewed journal | Contributor(s): Beaver, Matthew G., Brown, Derek B., Campbell, Kiersten, Fang, Yuan-Qing, Ford, David D., Mardirossian, Narbe, Nagy, Kevin D., Rötheli, Andreas R., Sheeran, Jillian W., Telmesani, Reem, Parsons, Andrew T.

    The development and kilogram-scale demonstration of a high-temperature continuous-flow racemization process to recycle the off-enantiomer of an atropisomeric sotorasib intermediate is described. Part 1 of this two-part series details the design and execution of a classical resolution to generate...

  9. Development and Scale-Up of a Continuous Manufacturing Process for a Hydrazine Condensation Reaction

    25 Jun 2024 | Peer-reviewed journal | Contributor(s): Zhu, Ruiheng, Reddy, Ramesh, Ding, Man, Xu, Ming, Deng, Chaoyi, Tadayon, Sam, Li, Hui, Depew, Kristopher, Lane, Benjamin

    The development of a continuous manufacturing process for a hydrazine condensation reaction at high temperature is reported. This continuous process represents a safer approach to manufacture 3-phenyl-1H-pyrazol-5-amine at scale and exhibits better impurity control compared to a traditional batch...

  10. Development of a Continuous Flow Grignard Reaction to Manufacture a Key Intermediate of Ipatasertib

    25 Jun 2024 | Peer-reviewed journal | Contributor(s): Kaldre, Dainis, Stocker, Severin, Linder, David, Reymond, Helena, Schuster, Andreas, Lamerz, Jens, Hildbrand, Stefan, Püntener, Kurt, Berry, Malcolm, Sedelmeier, Jörg

    This article outlines the development of a continuous flow process for the manufacture of a key intermediate of the active pharmaceutical ingredient ipatasertib for the treatment of metastatic castration-resistant prostate cancer and triple-negative metastatic breast cancer. The reaction sequence...

  11. A Virtual Plant for Integrated Continuous Manufacturing of a Carfilzomib Drug Substance Intermediate, Part 3: Manganese-Catalyzed Asymmetric Epoxidation, Crystallization, and Filtration

    25 Jun 2024 | Peer-reviewed journal | Contributor(s): Maloney, Andrew J., Içten, Elçin, Capellades, Gerard, Beaver, Matthew G., Zhu, Xiaoxiang, Graham, Lauren R., Brown, Derek B., Griffin, Daniel J., Sangodkar, Rahul, Allian, Ayman, Huggins, Seth, Hart, Roger, Rolandi, Pablo, Walker, Shawn D., Braatz, Richard D.

    This article describes the process characterization and development of models to inform a process control strategy to prepare (R,R)-epoxy ketone 2, an intermediate in the manufacture of carfilzomib. Model calibration for relevant unit operations and the development of a dynamic integrated...

  12. Development and Scale-Up of a Continuous, High-Pressure, Asymmetric Hydrogenation Reaction, Workup, and Isolation

    25 Jun 2024 | Peer-reviewed journal | Contributor(s): Johnson, Martin D., May, Scott A., Calvin, Joel R., Remacle, Jacob, Stout, James R., Diseroad, William D., Zaborenko, Nikolay, Haeberle, Brian D., Sun, Wei-Ming, Miller, Michael T., Brennan, John

    A fully continuous process including an asymmetric hydrogenation reaction operating at 70 bar hydrogen, aqueous extraction, and crystallization was designed, developed, and demonstrated at pilot scale. This paper highlights safety, quality, and throughput advantages of the continuous reaction and...

  13. Polymorphs, Particle Size, and a Pandemic: Development of a Scalable Crystallization Process for Molnupiravir, an Antiviral for the Treatment of COVID-19

    25 Jun 2024 | Peer-reviewed journal | Contributor(s): Bade, Rachel, Bothe, Jameson R., Sirota, Eric, Brunskill, Andrew P. J., Newman, Justin A., Zhang, Yongqian, Tan, Melissa, Zheng, Michelle, Brito, Gilmar, Poirier, Marc, Fier, Patrick S., Xu, Yingju, Ward, Michael D., Stone, Kevin, Lee, Ivan H., Gmitter, Andrew J., Bernardoni, Frank, Zompa, Michael A., Luo, Hanlin, Patel, Sanjaykumar, Masiuk, Tina, Mora, Jeff, Ni, Tong, Okoh, Grace A., Tarabokija, James, Liu, Jiaying, Lowinger, Michael B., Mahmood, Tariq

    Molnupiravir is a small-molecule active pharmaceutical ingredient (API) prodrug of a nucleoside analog that was demonstrated to be efficacious for the treatment of patients with COVID-19. Early in the pandemic, Merck & Co. Inc. partnered with Ridgeback Biotherapeutics to accelerate the...

  14. Embracing continuous manufacturing in the pharmaceutical industry

    03 Jun 2024 | Website | Contributor(s): Joelle Anselmo

    "Drugmakers have been slow to adopt the production process, which experts say can streamline operations, boost data quality and reduce time to market."

  15. Development of a Continuous Schotten–Baumann Route to an Acyl Sulfonamide

    24 Apr 2024 | Peer-reviewed journal | Contributor(s): White, Timothy D., Berglund, K. Derek, Groh, Jennifer McClary, Johnson, Martin D., Yates, Matthew H.

    The development and scale-up of a synthetic route to tasisulam sodium (5-bromo-thiophene-2-sulfonic acid 2,4-dichlorobenzoylamide sodium salt, hereafter referred to as tasisulam) utilizing continuous Schotten–Baumann reaction conditions is disclosed. A new synthetic route for the cytotoxic API...

  16. Development of a Multi-Step Synthesis and Workup Sequence for an Integrated, Continuous Manufacturing Process of a Pharmaceutical

    24 Apr 2024 | Peer-reviewed journal | Contributor(s): Heider, Patrick L., Born, Stephen C., Basak, Soubir, Benyahia, Brahim, Lakerveld, Richard, Zhang, Haitao, Hogan, Rachael, - Buchbinder, Louis, Wolfe, Aaron, Mascia, Salvatore, Evans, James M. B., Jamison, Timothy F., Jensen, Klavs F.

    The development and operation of the synthesis and workup steps of a fully integrated, continuous manufacturing plant for synthesizing aliskiren, a small molecule pharmaceutical, are presented. The plant started with advanced intermediates, two synthetic steps away from the final active...

  17. Innovation and Continuous Improvement in Pharmaceutical Manufacturing

    28 Mar 2024 | Document | Contributor(s): Ajaz Hussain (Chairperson) Raafat Fahmy (CVM), William Bargo (CVM), Robert Coleman, Robert (ORA), Elise Murphy (ORA), Frank Holcombe Jr (CDER), Chris Watts (CDER), See Lam (CDER), Jon Clark (CDER), Christopher Joneckis (CBER), John Dietrick (CDER), Diana Kolaitis (ORA), Vilayat Sayeed (CDER), Mai Huynh (CVM), Norman Schmuff (CDER), Andrew Chang (CBER)

    The PAT Team and Manufacturing Science Working Group Report: A Summary of Learning, Contributions and Proposed Next Steps for Moving towards the "Desired State" of Pharmaceutical Manufacturing in the 21st Century

  18. Innovation and Continuous Improvement in Pharmaceutical Manufacturing

    28 Mar 2024 | Document | Contributor(s): Ajaz Hussain (Chairperson) Raafat Fahmy (CVM), William Bargo (CVM), Robert Coleman, Robert (ORA), Elise Murphy (ORA), Frank Holcombe Jr (CDER), Chris Watts (CDER), See Lam (CDER), Jon Clark (CDER), Christopher Joneckis (CBER), John Dietrick (CDER), Diana Kolaitis (ORA), Vilayat Sayeed (CDER), Mai Huynh (CVM), Norman Schmuff (CDER), Andrew Chang (CBER)

    The PAT Team and Manufacturing Science Working Group Report: A Summary of Learning, Contributions and Proposed Next Steps for Moving towards the "Desired State" of Pharmaceutical Manufacturing in the 21st Century

  19. A Perspective on Quality by Design: A Preclinical Opportunity

    28 Mar 2024 | Document | Contributor(s): Ajaz S. Hussain

  20. A Shared Vision for Pharmaceutical Development and Manufacturing in the 21st Century: Contributions of the PAT Initiative

    28 Mar 2024 | Document | Contributor(s): Ajaz S. Hussain

  21. A Shared Vision for Pharmaceutical Development and Manufacturing in the 21st Century: Contributions of the PAT Initiative

    28 Mar 2024 | Document | Contributor(s): Ajaz S. Hussain

  22. The Subcommittee on Process Analytical Technologies (PAT): Closing Remarks

    28 Mar 2024 | Document | Contributor(s): Ajaz S. Hussain

  23. The Process Analytical Technology Initiative: PAT and the Pharmacopeias

    28 Mar 2024 | Document | Contributor(s): Ajaz S. Hussain

    The PAT Initiative A part of the Pharmaceutical Quality for the 21st Century Initiative  PAT and the USP Opportunities for the USP to support the PAT Framework

  24. Utilizing PAT to Monitor and Control Bulk Biotech Processes

    27 Mar 2024 | Document | Contributor(s): Rick E. Cooley

    1.What is and isn’t PAT? 2.Implementing PAT in Manufacturing: What does it take? 3.Characteristics of bulk, biotech API processes 4.Why PAT? 5.Review of PAT technologies utilized 6.PAT application examples

  25. Continuous Manufacturing for Pharmaceutical Solid Dosage Forms (On-Demand)

    31 Jan 2024 | Seminars | Contributor(s): Atul Dubey, Fernando Muzzio, Gerardo Callegari, Lucy L. Botros, Ravendra Singh, James Scicolone, Andres Roman, Sonia Modarres Razavi

    Course Description: This self-paced curriculum contains fourteen self-paced modules and three recordings of live virtual education on Pharmaceutical Continuous Manufacturing (PCM). Learners will have access to the following: A recording of the introductory session covering topics such as...