Skip to main content
Join CMKC members for a complimentary virtual event on December 10, 11am ET: CM MythBusters: https://bit.ly/3YXJynA. This is a fantastic opportunity to connect, collaborate, and debunk common myths about continuous manufacturing!
18.217.132.107

Resources: All

Find a resource
  1. flowchemistry x
  2. processanalyticaltechnology x
  3. crystallization x
  1. Matrix-assisted cocrystallization (MAC) simultaneous production and formulation of pharmaceutical cocrystals by hot-melt extrusion

    23 Jul 2024 | Contributor(s): Boksa, Kevin, Otte, Andrew, Pinal, Rodolfo

    A novel method for the simultaneous production and formulation of pharmaceutical cocrystals, matrix-assisted cocrystallization (MAC), is presented. Hot-melt extrusion (HME) is used to create cocrystals by coprocessing the drug and coformer in the presence of a matrix material. Carbamazepine...

  2. Axial Chirality in the Sotorasib Drug Substance, Part 2: Leveraging a High-Temperature Thermal Racemization to Recycle the Classical Resolution Waste Stream

    25 Jun 2024 | Contributor(s): Beaver, Matthew G., Brown, Derek B., Campbell, Kiersten, Fang, Yuan-Qing, Ford, David D., Mardirossian, Narbe, Nagy, Kevin D., Rötheli, Andreas R., Sheeran, Jillian W., Telmesani, Reem, Parsons, Andrew T.

    The development and kilogram-scale demonstration of a high-temperature continuous-flow racemization process to recycle the off-enantiomer of an atropisomeric sotorasib intermediate is described. Part 1 of this two-part series details the design and execution of a classical resolution to generate...

  3. Development and Scale-Up of a Continuous Manufacturing Process for a Hydrazine Condensation Reaction

    25 Jun 2024 | Contributor(s): Zhu, Ruiheng, Reddy, Ramesh, Ding, Man, Xu, Ming, Deng, Chaoyi, Tadayon, Sam, Li, Hui, Depew, Kristopher, Lane, Benjamin

    The development of a continuous manufacturing process for a hydrazine condensation reaction at high temperature is reported. This continuous process represents a safer approach to manufacture 3-phenyl-1H-pyrazol-5-amine at scale and exhibits better impurity control compared to a traditional batch...

  4. Development of a Continuous Flow Grignard Reaction to Manufacture a Key Intermediate of Ipatasertib

    25 Jun 2024 | Contributor(s): Kaldre, Dainis, Stocker, Severin, Linder, David, Reymond, Helena, Schuster, Andreas, Lamerz, Jens, Hildbrand, Stefan, Püntener, Kurt, Berry, Malcolm, Sedelmeier, Jörg

    This article outlines the development of a continuous flow process for the manufacture of a key intermediate of the active pharmaceutical ingredient ipatasertib for the treatment of metastatic castration-resistant prostate cancer and triple-negative metastatic breast cancer. The reaction sequence...

  5. A Virtual Plant for Integrated Continuous Manufacturing of a Carfilzomib Drug Substance Intermediate, Part 3: Manganese-Catalyzed Asymmetric Epoxidation, Crystallization, and Filtration

    25 Jun 2024 | Contributor(s): Maloney, Andrew J., Içten, Elçin, Capellades, Gerard, Beaver, Matthew G., Zhu, Xiaoxiang, Graham, Lauren R., Brown, Derek B., Griffin, Daniel J., Sangodkar, Rahul, Allian, Ayman, Huggins, Seth, Hart, Roger, Rolandi, Pablo, Walker, Shawn D., Braatz, Richard D.

    This article describes the process characterization and development of models to inform a process control strategy to prepare (R,R)-epoxy ketone 2, an intermediate in the manufacture of carfilzomib. Model calibration for relevant unit operations and the development of a dynamic integrated...

  6. Development and Scale-Up of a Continuous, High-Pressure, Asymmetric Hydrogenation Reaction, Workup, and Isolation

    25 Jun 2024 | Contributor(s): Johnson, Martin D., May, Scott A., Calvin, Joel R., Remacle, Jacob, Stout, James R., Diseroad, William D., Zaborenko, Nikolay, Haeberle, Brian D., Sun, Wei-Ming, Miller, Michael T., Brennan, John

    A fully continuous process including an asymmetric hydrogenation reaction operating at 70 bar hydrogen, aqueous extraction, and crystallization was designed, developed, and demonstrated at pilot scale. This paper highlights safety, quality, and throughput advantages of the continuous reaction and...

  7. Polymorphs, Particle Size, and a Pandemic: Development of a Scalable Crystallization Process for Molnupiravir, an Antiviral for the Treatment of COVID-19

    25 Jun 2024 | Contributor(s): Bade, Rachel, Bothe, Jameson R., Sirota, Eric, Brunskill, Andrew P. J., Newman, Justin A., Zhang, Yongqian, Tan, Melissa, Zheng, Michelle, Brito, Gilmar, Poirier, Marc, Fier, Patrick S., Xu, Yingju, Ward, Michael D., Stone, Kevin, Lee, Ivan H., Gmitter, Andrew J., Bernardoni, Frank, Zompa, Michael A., Luo, Hanlin, Patel, Sanjaykumar, Masiuk, Tina, Mora, Jeff, Ni, Tong, Okoh, Grace A., Tarabokija, James, Liu, Jiaying, Lowinger, Michael B., Mahmood, Tariq

    Molnupiravir is a small-molecule active pharmaceutical ingredient (API) prodrug of a nucleoside analog that was demonstrated to be efficacious for the treatment of patients with COVID-19. Early in the pandemic, Merck & Co. Inc. partnered with Ridgeback Biotherapeutics to accelerate the...

  8. Continuous Flow Intensification for the Synthesis of High-Purity Warfarin

    10 May 2024 | Contributor(s): Silva-Brenes, Diana V., Reyes-Vargas, Stephanie K., Duconge, Jorge, Vlaar, Cornelis, Stelzer, Torsten, Monbaliu, Jean-Christophe M.

    While racemic warfarin was initially commercialized as a rodenticide, it has become the most prescribed anticoagulant drug for prevention of blood clots and is part of the World Health Organization’s list of essential medicines. The synthesis of warfarin appears straightforward, consisting of a...

  9. Rapid production of the anaesthetic mepivacaine through continuous, portable technology

    24 Apr 2024 | Contributor(s): Díaz-Kruik, Pablo, Paradisi, Francesca

    Local anaesthetics such as mepivacaine are key molecules in the medical sector, so ensuring their supply chain is crucial for every health care system. Rapid production of mepivacaine from readily available commercial reagents and (non-dry) solvents under safe conditions using portable,...

  10. Development of a Continuous Schotten–Baumann Route to an Acyl Sulfonamide

    24 Apr 2024 | Contributor(s): White, Timothy D., Berglund, K. Derek, Groh, Jennifer McClary, Johnson, Martin D., Yates, Matthew H.

    The development and scale-up of a synthetic route to tasisulam sodium (5-bromo-thiophene-2-sulfonic acid 2,4-dichlorobenzoylamide sodium salt, hereafter referred to as tasisulam) utilizing continuous Schotten–Baumann reaction conditions is disclosed. A new synthetic route for the cytotoxic API...

  11. Development of a Multi-Step Synthesis and Workup Sequence for an Integrated, Continuous Manufacturing Process of a Pharmaceutical

    24 Apr 2024 | Contributor(s): Heider, Patrick L., Born, Stephen C., Basak, Soubir, Benyahia, Brahim, Lakerveld, Richard, Zhang, Haitao, Hogan, Rachael, - Buchbinder, Louis, Wolfe, Aaron, Mascia, Salvatore, Evans, James M. B., Jamison, Timothy F., Jensen, Klavs F.

    The development and operation of the synthesis and workup steps of a fully integrated, continuous manufacturing plant for synthesizing aliskiren, a small molecule pharmaceutical, are presented. The plant started with advanced intermediates, two synthetic steps away from the final active...

  12. Multi-step Flow Synthesis of the Anthelmintic Drug Praziquantel

    24 Apr 2024 | Contributor(s): Phull, Manjinder Singh, Bohara, Chander Singh, Gundla, Rambabu, Mainkar, Prathama S., Jadav, Surender Singh

    Praziquantel (PZQ; Brand name: Biltricide) is categorized as an anthelminthic drug, and it is used for the treatment of Schistosomiasis and other parasitic infections. The World Health Organization (WHO) has classified it as one of the essential and emergency medicines needed across the globe....

  13. Continuous Flow-Facilitated CB2 Agonist Synthesis, Part 2: Cyclization, Chlorination, and Amination

    24 Apr 2024 | Contributor(s): Prieschl, Michael, Sagmeister, Peter, Moessner, Christian, Sedelmeier, Joerg, Williams, Jason D., Kappe, C. Oliver

    A new route to the cannabinoid receptor type 2 agonist, RG7774, has been developed circumventing an alkylation with poor regioselectivity as the final step. In the new synthetic route, this side chain is incorporated from the beginning. In this article, the development of the final four...

  14. A Continuous Process for Manufacturing Apremilast. Part I: Process Development and Intensification by Utilizing Flow Chemistry Principles

    24 Apr 2024 | Contributor(s): Hsieh, Hsiao-Wu, Griffin, Daniel J., Ananthoji, Padmini, Avci, Nadide Hazal, Brown, Derek B., Ericson, Ari, Fostinis, James D., Irfan, Muhammad, Langille, Neil, Lovette, Michael A., Murray, James I., Spada, Simone, Thiel, Oliver R., Aiello, Frankie, Daou, Joseph, Goudas-Salomon, Nicole, Pan, Ende, Sarkar, Nandini, Wimalasinghe, Rasangi, Wu, Zufan Steven, Zeng, Alicia, Beaver, Matthew G., Cohen, Carolyn M.

    Herein, we report the development of an integrated continuous manufacturing (CM) process for the penultimate step in the synthesis of apremilast, the drug substance (DS) of the commercial product Otezla. This development effort was motivated by the desire to create an alternative manufacturing...

  15. Innovation and Continuous Improvement in Pharmaceutical Manufacturing

    28 Mar 2024 | Document | Contributor(s): Ajaz Hussain (Chairperson) Raafat Fahmy (CVM), William Bargo (CVM), Robert Coleman, Robert (ORA), Elise Murphy (ORA), Frank Holcombe Jr (CDER), Chris Watts (CDER), See Lam (CDER), Jon Clark (CDER), Christopher Joneckis (CBER), John Dietrick (CDER), Diana Kolaitis (ORA), Vilayat Sayeed (CDER), Mai Huynh (CVM), Norman Schmuff (CDER), Andrew Chang (CBER)

    The PAT Team and Manufacturing Science Working Group Report: A Summary of Learning, Contributions and Proposed Next Steps for Moving towards the "Desired State" of Pharmaceutical Manufacturing in the 21st Century

  16. A Perspective on Quality by Design: A Preclinical Opportunity

    28 Mar 2024 | Document | Contributor(s): Ajaz S. Hussain

  17. A Shared Vision for Pharmaceutical Development and Manufacturing in the 21st Century: Contributions of the PAT Initiative

    28 Mar 2024 | Document | Contributor(s): Ajaz S. Hussain

  18. The Subcommittee on Process Analytical Technologies (PAT): Closing Remarks

    28 Mar 2024 | Document | Contributor(s): Ajaz S. Hussain

  19. The Process Analytical Technology Initiative: PAT and the Pharmacopeias

    28 Mar 2024 | Document | Contributor(s): Ajaz S. Hussain

    The PAT Initiative A part of the Pharmaceutical Quality for the 21st Century Initiative  PAT and the USP Opportunities for the USP to support the PAT Framework

  20. Utilizing PAT to Monitor and Control Bulk Biotech Processes

    27 Mar 2024 | Document | Contributor(s): Rick E. Cooley

    1.What is and isn’t PAT? 2.Implementing PAT in Manufacturing: What does it take? 3.Characteristics of bulk, biotech API processes 4.Why PAT? 5.Review of PAT technologies utilized 6.PAT application examples

  21. Continuous Manufacturing for Pharmaceutical Solid Dosage Forms (On-Demand)

    31 Jan 2024 | Seminars | Contributor(s): Atul Dubey, Fernando Muzzio, Gerardo Callegari, Lucy L. Botros, Ravendra Singh, James Scicolone, Andres Roman, Sonia Modarres Razavi

    Course Description: This self-paced curriculum contains fourteen self-paced modules and three recordings of live virtual education on Pharmaceutical Continuous Manufacturing (PCM). Learners will have access to the following: A recording of the introductory session covering topics such as...

  22. The optimization of process analytical technology for the inline quantification of multiple drugs in fixed dose combinations during continuous processing

    09 Jun 2023 | Peer-reviewed journal | Contributor(s): Dadou, SM, Tian, YWLi, S, Jones, DS, Andrews, GP

    Complications associated with uncontrolled hypertension are considered the major cause of premature death worldwide. Fixed-dose combinations (FDCs) offer an alternative approach to polypharmacy with the aim to improve patient compliance. Process Analytical Technology (PAT) is gaining momentum as...

  23. The Use of PAT and Off-line Methods for Monitoring of Roller Compacted Ribbon and Granule Properties with a View to Continuous Processing

    09 Jun 2023 | Peer-reviewed journal | Contributor(s): McAuliffe M.A.P., Omahony G.E., Blackshields C.A., Collins J.A., Egan D.P., Kiernan L., Oneill E., Lenihan S., Walker G.M., Crean A.M.

    Real-time process monitoring using process analytical technology (PAT) tools can augment process understanding, enable improved process control, and hence facilitate the production of high-quality pharmaceutical products. While beneficial for batch processes, the availability of PAT tools to...

  24. The Evolving State of Continuous Processing in Pharmaceutical API Manufacturing: A Survey of Pharmaceutical Companies and Contract Manufacturing Organizations

    09 Jun 2023 | Peer-reviewed journal | Contributor(s): McWilliams, JC, Allian, ADOpalka, SM, May, SA, Journet, M, Braden, TM

    This manuscript provides the results of an in-depth survey assessment of the capabilities, experience, and perspectives on continuous processing in the pharmaceutical sector, with respondents from both pharmaceutical companies and Contract Manufacturing Organizations (CMOs). The survey includes...

  25. The development of an inline Raman spectroscopic analysis method as a quality control tool for hot melt extruded ramipril fixed-dose combination products

    09 Jun 2023 | Peer-reviewed journal | Contributor(s): Andres, G.P., Jones D.S., Senta-Loys Z., Almajaan A., Li S., Chevallier O., Elliot C., Healy A.M., Kelleher J.F., Madi A.M., Gilvary G.C., Tian Y.a

    Currently in the pharmaceutical industry, continuous manufacturing is an area of significant interest. In particular, hot-melt extrusion (HME) offers many advantages and has been shown to significantly reduce the number of processing steps relative to a conventional product manufacturing line. To...