Skip to main content
Prepare for an exciting September! Each week, we'll examine the latest trends in PAT, offering fresh insights straight from recent conferences. Your perspective matters, so we encourage you to share your thoughts as well. Stay informed, stay engaged, and let's explore these cutting-edge developments together. https://bit.ly/3Xw0X7k
18.116.89.38

Resources: All

Find a resource
  1. modeling x
  2. pat x
  3. processanalyticaltechnology x
  4. nearinfraredspectroscopy x
  5. flowchemistry x
  1. Pharmaceutical Continuous Manufacturing: Content Uniformity With PAT And RTR

    16 Sep 2024 | Website | Contributor(s): Richard Steiner

    In pharmaceutical continuous manufacturing (PCM), technical solutions ensuring critical quality attributes for content uniformity and unit dose exist for online, in-line, and at-line measurements. Process analytical technology (PAT) allows in-line measurement and control of critical process...

  2. The Use of a Closed Feed Frame for the Development of Near-Infrared Spectroscopic Calibration Model to Determine Drug Concentration

    23 Jul 2024 | Peer-reviewed journal | Contributor(s): Movilla-Meza, Nathaly A., Sierra-Vega, Nobel O., Alvarado-Hernández, Bárbara B., Méndez, Rafael, Romañach, Rodolfo J.

    Purpose: This study evaluates the use of the closed feed frame as a material sparing approach to develop near-infrared (NIR) spectroscopic calibration models for monitoring blend uniformity. The effect of shear induced by recirculation on NIR spectra was also studied. Methods: Calibration models...

  3. Development of a Continuous Flow Grignard Reaction to Manufacture a Key Intermediate of Ipatasertib

    23 Jul 2024 | Peer-reviewed journal | Contributor(s): Kaldre, Dainis, Stocker, Severin, Linder, David, Reymond, Helena, Schuster, Andreas, Lamerz, Jens, Hildbrand, Stefan, Püntener, Kurt, Berry, Malcolm, Sedelmeier, Jörg

    This article outlines the development of a continuous flow process for the manufacture of a key intermediate of the active pharmaceutical ingredient ipatasertib for the treatment of metastatic castration-resistant prostate cancer and triple-negative metastatic breast cancer. The reaction sequence...

  4. Cleaning of direct compression continuous manufacturing equipment through displacement of API residues by excipients

    23 Jul 2024 | Peer-reviewed journal | Contributor(s): Patel, Dhavalkumar S, Méndez, Rafael, Romañach, Rodolfo J

    This feasibility study evaluates a cleaning process designed to avoid the use of detergents and reduce operator exposure to the active pharmaceutical ingredient (API). The continuous manufacturing equipment was cleaned using excipients to displace ibuprofen residues from the system. The cleaning...

  5. Blend uniformity monitoring in a continuous manufacturing mixing process for a low-dosage formulation using a stream sampler and near infrared spectroscopy

    19 Jul 2024 | Peer-reviewed journal | Contributor(s): Rodolfo Romanach, Raúl S. Rangel-Gil, Juan M. Nasrala-Álvarez, Rafael Méndez

    Continuous manufacturing has the potential to offer several benefits for the production of oral solid dosage forms, including reduced costs, low-scale equipment, and the application of process analytical technology (PAT) for real-time process control. This study focuses on the implementation of...

  6. Development of a Continuous Flow Grignard Reaction to Manufacture a Key Intermediate of Ipatasertib

    25 Jun 2024 | Peer-reviewed journal | Contributor(s): Kaldre, Dainis, Stocker, Severin, Linder, David, Reymond, Helena, Schuster, Andreas, Lamerz, Jens, Hildbrand, Stefan, Püntener, Kurt, Berry, Malcolm, Sedelmeier, Jörg

    This article outlines the development of a continuous flow process for the manufacture of a key intermediate of the active pharmaceutical ingredient ipatasertib for the treatment of metastatic castration-resistant prostate cancer and triple-negative metastatic breast cancer. The reaction sequence...

  7. Development and Application of Control Concepts for Twin-Screw Wet Granulation in the ConsiGmaTM-25: Part 2 Granule Size

    04 Jun 2024 | Peer-reviewed journal | Contributor(s): Selma Celikovic, Johannes Poms, Johannes Khinast, Martin Horn, Jakob Rehrl

    Traditional operation modes, such as running the production processes at constant process settings or within a narrow design space, do not fully exploit the advantages of continuous pharmaceutical manufacturing. Integrating Quality by Control (QbC) algorithms as a standard component of...

  8. Continuous Flow Intensification for the Synthesis of High-Purity Warfarin

    10 May 2024 | Peer-reviewed journal | Contributor(s): Silva-Brenes, Diana V., Reyes-Vargas, Stephanie K., Duconge, Jorge, Vlaar, Cornelis, Stelzer, Torsten, Monbaliu, Jean-Christophe M.

    While racemic warfarin was initially commercialized as a rodenticide, it has become the most prescribed anticoagulant drug for prevention of blood clots and is part of the World Health Organization’s list of essential medicines. The synthesis of warfarin appears straightforward, consisting of a...

  9. Rapid production of the anaesthetic mepivacaine through continuous, portable technology

    24 Apr 2024 | Peer-reviewed journal | Contributor(s): Díaz-Kruik, Pablo, Paradisi, Francesca

    Local anaesthetics such as mepivacaine are key molecules in the medical sector, so ensuring their supply chain is crucial for every health care system. Rapid production of mepivacaine from readily available commercial reagents and (non-dry) solvents under safe conditions using portable,...

  10. Multi-step Flow Synthesis of the Anthelmintic Drug Praziquantel

    24 Apr 2024 | Peer-reviewed journal | Contributor(s): Phull, Manjinder Singh, Bohara, Chander Singh, Gundla, Rambabu, Mainkar, Prathama S., Jadav, Surender Singh

    Praziquantel (PZQ; Brand name: Biltricide) is categorized as an anthelminthic drug, and it is used for the treatment of Schistosomiasis and other parasitic infections. The World Health Organization (WHO) has classified it as one of the essential and emergency medicines needed across the globe....

  11. Continuous Flow-Facilitated CB2 Agonist Synthesis, Part 2: Cyclization, Chlorination, and Amination

    24 Apr 2024 | Peer-reviewed journal | Contributor(s): Prieschl, Michael, Sagmeister, Peter, Moessner, Christian, Sedelmeier, Joerg, Williams, Jason D., Kappe, C. Oliver

    A new route to the cannabinoid receptor type 2 agonist, RG7774, has been developed circumventing an alkylation with poor regioselectivity as the final step. In the new synthetic route, this side chain is incorporated from the beginning. In this article, the development of the final four...

  12. A Continuous Process for Manufacturing Apremilast. Part I: Process Development and Intensification by Utilizing Flow Chemistry Principles

    24 Apr 2024 | Peer-reviewed journal | Contributor(s): Hsieh, Hsiao-Wu, Griffin, Daniel J., Ananthoji, Padmini, Avci, Nadide Hazal, Brown, Derek B., Ericson, Ari, Fostinis, James D., Irfan, Muhammad, Langille, Neil, Lovette, Michael A., Murray, James I., Spada, Simone, Thiel, Oliver R., Aiello, Frankie, Daou, Joseph, Goudas-Salomon, Nicole, Pan, Ende, Sarkar, Nandini, Wimalasinghe, Rasangi, Wu, Zufan Steven, Zeng, Alicia, Beaver, Matthew G., Cohen, Carolyn M.

    Herein, we report the development of an integrated continuous manufacturing (CM) process for the penultimate step in the synthesis of apremilast, the drug substance (DS) of the commercial product Otezla. This development effort was motivated by the desire to create an alternative manufacturing...

  13. A Focused and Flexible Analytical Strategy is Key to Unlocking the Benefits of Continuous Manufacturing

    11 Apr 2024 | Website | Contributor(s): Bikash Chatterjee

    Continuous manufacturing processes promise shorter manufacturing cycle times without the need for intermediate storage, sampling testing and release of intermediate process steps, and shorter product release times through the intelligent application of in-line and at-line testing strategies....

  14. Innovation and Continuous Improvement in Pharmaceutical Manufacturing

    28 Mar 2024 | Document | Contributor(s): Ajaz Hussain (Chairperson) Raafat Fahmy (CVM), William Bargo (CVM), Robert Coleman, Robert (ORA), Elise Murphy (ORA), Frank Holcombe Jr (CDER), Chris Watts (CDER), See Lam (CDER), Jon Clark (CDER), Christopher Joneckis (CBER), John Dietrick (CDER), Diana Kolaitis (ORA), Vilayat Sayeed (CDER), Mai Huynh (CVM), Norman Schmuff (CDER), Andrew Chang (CBER)

    The PAT Team and Manufacturing Science Working Group Report: A Summary of Learning, Contributions and Proposed Next Steps for Moving towards the "Desired State" of Pharmaceutical Manufacturing in the 21st Century

  15. Innovation and Continuous Improvement in Pharmaceutical Manufacturing

    28 Mar 2024 | Document | Contributor(s): Ajaz Hussain (Chairperson) Raafat Fahmy (CVM), William Bargo (CVM), Robert Coleman, Robert (ORA), Elise Murphy (ORA), Frank Holcombe Jr (CDER), Chris Watts (CDER), See Lam (CDER), Jon Clark (CDER), Christopher Joneckis (CBER), John Dietrick (CDER), Diana Kolaitis (ORA), Vilayat Sayeed (CDER), Mai Huynh (CVM), Norman Schmuff (CDER), Andrew Chang (CBER)

    The PAT Team and Manufacturing Science Working Group Report: A Summary of Learning, Contributions and Proposed Next Steps for Moving towards the "Desired State" of Pharmaceutical Manufacturing in the 21st Century

  16. A Perspective on Quality by Design: A Preclinical Opportunity

    28 Mar 2024 | Document | Contributor(s): Ajaz S. Hussain

  17. A Perspective on Quality by Design: A Preclinical Opportunity

    28 Mar 2024 | Document | Contributor(s): Ajaz S. Hussain

  18. A Shared Vision for Pharmaceutical Development and Manufacturing in the 21st Century: Contributions of the PAT Initiative

    28 Mar 2024 | Document | Contributor(s): Ajaz S. Hussain

  19. A Shared Vision for Pharmaceutical Development and Manufacturing in the 21st Century: Contributions of the PAT Initiative

    28 Mar 2024 | Document | Contributor(s): Ajaz S. Hussain

  20. The Subcommittee on Process Analytical Technologies (PAT): Closing Remarks

    28 Mar 2024 | Document | Contributor(s): Ajaz S. Hussain

  21. The Subcommittee on Process Analytical Technologies (PAT): Closing Remarks

    28 Mar 2024 | Document | Contributor(s): Ajaz S. Hussain

  22. The Process Analytical Technology Initiative: PAT and the Pharmacopeias

    28 Mar 2024 | Document | Contributor(s): Ajaz S. Hussain

    The PAT Initiative A part of the Pharmaceutical Quality for the 21st Century Initiative  PAT and the USP Opportunities for the USP to support the PAT Framework

  23. The Process Analytical Technology Initiative: PAT and the Pharmacopeias

    28 Mar 2024 | Document | Contributor(s): Ajaz S. Hussain

    The PAT Initiative A part of the Pharmaceutical Quality for the 21st Century Initiative  PAT and the USP Opportunities for the USP to support the PAT Framework

  24. Utilizing PAT to Monitor and Control Bulk Biotech Processes

    27 Mar 2024 | Document | Contributor(s): Rick E. Cooley

    1.What is and isn’t PAT? 2.Implementing PAT in Manufacturing: What does it take? 3.Characteristics of bulk, biotech API processes 4.Why PAT? 5.Review of PAT technologies utilized 6.PAT application examples

  25. Utilizing PAT to Monitor and Control Bulk Biotech Processes

    27 Mar 2024 | Document | Contributor(s): Rick E. Cooley

    1.What is and isn’t PAT? 2.Implementing PAT in Manufacturing: What does it take? 3.Characteristics of bulk, biotech API processes 4.Why PAT? 5.Review of PAT technologies utilized 6.PAT application examples