Skip to main content
Join CMKC members for a complimentary virtual event on December 10, 11am ET: CM MythBusters: https://bit.ly/3YXJynA. This is a fantastic opportunity to connect, collaborate, and debunk common myths about continuous manufacturing!
52.15.170.196

Resources: All

Find a resource
  1. processanalyticaltechnology x
  2. flowchemistry x
  3. regulatory x
  4. twinscrewgranulation x
  5. nearinfraredspectroscopy x
  1. An audit of pharmaceutical continuous manufacturing regulatory submissions and outcomes in the US

    20 Nov 2024 | Peer-reviewed journal | Contributor(s): Adam C. Fisher, William Liu, Andreas Schick, Mahesh Ramanadham, Sharmista Chatterjee, Raphael Brykman, Sau L. Lee, Steven Kozlowski, Ashley B. Boam, Stelios C. Tsinontides, Michael Kopcha

    Continuous manufacturing (CM) sends materials directly and continuously to the next step of a process, eliminating hold times and reducing processing times. The potential benefits of CM include improved product quality, reduced waste, lower costs, and increased manufacturing flexibility and...

  2. The role of digital twins in driving sustainability

    29 Oct 2024 | Peer-reviewed journal | Contributor(s): Deborah McElhone, Barrie Cassey, Kamal Abu-Hassan

    As the pharmaceutical sector endeavours to become more sustainable, we hear how digital twins – virtual replicas of systems or products that can help predict performance – are supporting the industry in its efforts.

  3. Continuous manufacturing: Changing the paradigm in the pharmaceutical manufacturing sector

    23 Sep 2024 | Magazine | Contributor(s): Indu Bhushan

    The author explains how continuous manufacturing is reshaping pharmaceutical production

  4. The Rise of Continuous Manufacturing in Pharma

    13 Aug 2024 | Website | Contributor(s): Editorial Team

    "Mr Indu Bhushan, CEO and Director of STEERLife shares his insights on the transformative journey of continuous manufacturing, and the advanced technologies that have propelled this paradigm shift. He also throws light on how continuous manufacturing has accelerated drug development...

  5. The Use of a Closed Feed Frame for the Development of Near-Infrared Spectroscopic Calibration Model to Determine Drug Concentration

    23 Jul 2024 | Peer-reviewed journal | Contributor(s): Movilla-Meza, Nathaly A., Sierra-Vega, Nobel O., Alvarado-Hernández, Bárbara B., Méndez, Rafael, Romañach, Rodolfo J.

    Purpose: This study evaluates the use of the closed feed frame as a material sparing approach to develop near-infrared (NIR) spectroscopic calibration models for monitoring blend uniformity. The effect of shear induced by recirculation on NIR spectra was also studied. Methods: Calibration models...

  6. Continuous Manufacturing in the Pharmaceutical Industry: Enhancing Drug Production

    23 Jul 2024 | Website | Contributor(s): Timmerman, Siebe

    A significant shift towards continuous manufacturing (CM) is currently underway in the pharmaceutical industry. Unlike the more commonly used batch processing, CM operates continuously. This method potentially offers increased efficiency, agility, and flexibility in the manufacturing of drug...

  7. Delta-mannitol to enable continuous twin-screw granulation of a highly dosed, poorly compactable formulation

    23 Jul 2024 | Peer-reviewed journal | Contributor(s): Vanhoorne, V., Almey, R., De Beer, T., Vervaet, C.

    In current study, it was investigated if the moisture-mediated polymorphic transition from δ- to β-mannitol during twin screw granulation (TSG) also took place in high drug loaded formulations and if the specific granule morphology associated with the polymorphic transition could enable tableting...

  8. Cleaning of direct compression continuous manufacturing equipment through displacement of API residues by excipients

    23 Jul 2024 | Peer-reviewed journal | Contributor(s): Patel, Dhavalkumar S, Méndez, Rafael, Romañach, Rodolfo J

    This feasibility study evaluates a cleaning process designed to avoid the use of detergents and reduce operator exposure to the active pharmaceutical ingredient (API). The continuous manufacturing equipment was cleaned using excipients to displace ibuprofen residues from the system. The cleaning...

  9. Control oriented modeling of twin-screw granulation in the ConsiGmaTM-25 production plant

    09 Jul 2024 | Peer-reviewed journal | Contributor(s): Johannes Khinast, Martin Horn, Jakob Rehrl, Selma Celikovic, Johannes Poms

    ConsiGmaTM-25 is a continuous production plant integrating a twin-screw granulation, fluid bed drying, granule conditioning, and a tableting unit. The particle size distribution (PSD), active pharmaceutical ingredient (API) content, and liquid content of wet granules after twin-screw...

  10. Development of a Continuous Flow Grignard Reaction to Manufacture a Key Intermediate of Ipatasertib

    25 Jun 2024 | Peer-reviewed journal | Contributor(s): Kaldre, Dainis, Stocker, Severin, Linder, David, Reymond, Helena, Schuster, Andreas, Lamerz, Jens, Hildbrand, Stefan, Püntener, Kurt, Berry, Malcolm, Sedelmeier, Jörg

    This article outlines the development of a continuous flow process for the manufacture of a key intermediate of the active pharmaceutical ingredient ipatasertib for the treatment of metastatic castration-resistant prostate cancer and triple-negative metastatic breast cancer. The reaction sequence...

  11. Embracing continuous manufacturing in the pharmaceutical industry

    03 Jun 2024 | Website | Contributor(s): Joelle Anselmo

    "Drugmakers have been slow to adopt the production process, which experts say can streamline operations, boost data quality and reduce time to market."

  12. Continuous Flow Intensification for the Synthesis of High-Purity Warfarin

    10 May 2024 | Peer-reviewed journal | Contributor(s): Silva-Brenes, Diana V., Reyes-Vargas, Stephanie K., Duconge, Jorge, Vlaar, Cornelis, Stelzer, Torsten, Monbaliu, Jean-Christophe M.

    While racemic warfarin was initially commercialized as a rodenticide, it has become the most prescribed anticoagulant drug for prevention of blood clots and is part of the World Health Organization’s list of essential medicines. The synthesis of warfarin appears straightforward, consisting of a...

  13. Rapid production of the anaesthetic mepivacaine through continuous, portable technology

    24 Apr 2024 | Peer-reviewed journal | Contributor(s): Díaz-Kruik, Pablo, Paradisi, Francesca

    Local anaesthetics such as mepivacaine are key molecules in the medical sector, so ensuring their supply chain is crucial for every health care system. Rapid production of mepivacaine from readily available commercial reagents and (non-dry) solvents under safe conditions using portable,...

  14. Multi-step Flow Synthesis of the Anthelmintic Drug Praziquantel

    24 Apr 2024 | Peer-reviewed journal | Contributor(s): Phull, Manjinder Singh, Bohara, Chander Singh, Gundla, Rambabu, Mainkar, Prathama S., Jadav, Surender Singh

    Praziquantel (PZQ; Brand name: Biltricide) is categorized as an anthelminthic drug, and it is used for the treatment of Schistosomiasis and other parasitic infections. The World Health Organization (WHO) has classified it as one of the essential and emergency medicines needed across the globe....

  15. Continuous Flow-Facilitated CB2 Agonist Synthesis, Part 2: Cyclization, Chlorination, and Amination

    24 Apr 2024 | Peer-reviewed journal | Contributor(s): Prieschl, Michael, Sagmeister, Peter, Moessner, Christian, Sedelmeier, Joerg, Williams, Jason D., Kappe, C. Oliver

    A new route to the cannabinoid receptor type 2 agonist, RG7774, has been developed circumventing an alkylation with poor regioselectivity as the final step. In the new synthetic route, this side chain is incorporated from the beginning. In this article, the development of the final four...

  16. A Continuous Process for Manufacturing Apremilast. Part I: Process Development and Intensification by Utilizing Flow Chemistry Principles

    24 Apr 2024 | Peer-reviewed journal | Contributor(s): Hsieh, Hsiao-Wu, Griffin, Daniel J., Ananthoji, Padmini, Avci, Nadide Hazal, Brown, Derek B., Ericson, Ari, Fostinis, James D., Irfan, Muhammad, Langille, Neil, Lovette, Michael A., Murray, James I., Spada, Simone, Thiel, Oliver R., Aiello, Frankie, Daou, Joseph, Goudas-Salomon, Nicole, Pan, Ende, Sarkar, Nandini, Wimalasinghe, Rasangi, Wu, Zufan Steven, Zeng, Alicia, Beaver, Matthew G., Cohen, Carolyn M.

    Herein, we report the development of an integrated continuous manufacturing (CM) process for the penultimate step in the synthesis of apremilast, the drug substance (DS) of the commercial product Otezla. This development effort was motivated by the desire to create an alternative manufacturing...

  17. Innovation and Continuous Improvement in Pharmaceutical Manufacturing

    28 Mar 2024 | Document | Contributor(s): Ajaz Hussain (Chairperson) Raafat Fahmy (CVM), William Bargo (CVM), Robert Coleman, Robert (ORA), Elise Murphy (ORA), Frank Holcombe Jr (CDER), Chris Watts (CDER), See Lam (CDER), Jon Clark (CDER), Christopher Joneckis (CBER), John Dietrick (CDER), Diana Kolaitis (ORA), Vilayat Sayeed (CDER), Mai Huynh (CVM), Norman Schmuff (CDER), Andrew Chang (CBER)

    The PAT Team and Manufacturing Science Working Group Report: A Summary of Learning, Contributions and Proposed Next Steps for Moving towards the "Desired State" of Pharmaceutical Manufacturing in the 21st Century

  18. Innovation and Continuous Improvement in Pharmaceutical Manufacturing

    28 Mar 2024 | Document | Contributor(s): Ajaz Hussain (Chairperson) Raafat Fahmy (CVM), William Bargo (CVM), Robert Coleman, Robert (ORA), Elise Murphy (ORA), Frank Holcombe Jr (CDER), Chris Watts (CDER), See Lam (CDER), Jon Clark (CDER), Christopher Joneckis (CBER), John Dietrick (CDER), Diana Kolaitis (ORA), Vilayat Sayeed (CDER), Mai Huynh (CVM), Norman Schmuff (CDER), Andrew Chang (CBER)

    The PAT Team and Manufacturing Science Working Group Report: A Summary of Learning, Contributions and Proposed Next Steps for Moving towards the "Desired State" of Pharmaceutical Manufacturing in the 21st Century

  19. A Perspective on Quality by Design: A Preclinical Opportunity

    28 Mar 2024 | Document | Contributor(s): Ajaz S. Hussain

  20. A Shared Vision for Pharmaceutical Development and Manufacturing in the 21st Century: Contributions of the PAT Initiative

    28 Mar 2024 | Document | Contributor(s): Ajaz S. Hussain

  21. A Shared Vision for Pharmaceutical Development and Manufacturing in the 21st Century: Contributions of the PAT Initiative

    28 Mar 2024 | Document | Contributor(s): Ajaz S. Hussain

  22. The Subcommittee on Process Analytical Technologies (PAT): Closing Remarks

    28 Mar 2024 | Document | Contributor(s): Ajaz S. Hussain

  23. The Process Analytical Technology Initiative: PAT and the Pharmacopeias

    28 Mar 2024 | Document | Contributor(s): Ajaz S. Hussain

    The PAT Initiative A part of the Pharmaceutical Quality for the 21st Century Initiative  PAT and the USP Opportunities for the USP to support the PAT Framework

  24. Utilizing PAT to Monitor and Control Bulk Biotech Processes

    27 Mar 2024 | Document | Contributor(s): Rick E. Cooley

    1.What is and isn’t PAT? 2.Implementing PAT in Manufacturing: What does it take? 3.Characteristics of bulk, biotech API processes 4.Why PAT? 5.Review of PAT technologies utilized 6.PAT application examples

  25. Continuous Manufacturing for Pharmaceutical Solid Dosage Forms (On-Demand)

    31 Jan 2024 | Seminars | Contributor(s): Atul Dubey, Fernando Muzzio, Gerardo Callegari, Lucy L. Botros, Ravendra Singh, James Scicolone, Andres Roman, Sonia Modarres Razavi

    Course Description: This self-paced curriculum contains fourteen self-paced modules and three recordings of live virtual education on Pharmaceutical Continuous Manufacturing (PCM). Learners will have access to the following: A recording of the introductory session covering topics such as...