Skip to main content
Join CMKC members for a complimentary virtual event on December 10, 11am ET: CM MythBusters: https://bit.ly/3YXJynA. This is a fantastic opportunity to connect, collaborate, and debunk common myths about continuous manufacturing!
3.135.184.136

Resources: All

Find a resource
  1. oralsoliddose x
  2. continuousprocessing x
  3. processanalyticaltechnology x
  4. nearinfraredspectroscopy x
  5. regulatory x
  1. An audit of pharmaceutical continuous manufacturing regulatory submissions and outcomes in the US

    20 Nov 2024 | Peer-reviewed journal | Contributor(s): Adam C. Fisher, William Liu, Andreas Schick, Mahesh Ramanadham, Sharmista Chatterjee, Raphael Brykman, Sau L. Lee, Steven Kozlowski, Ashley B. Boam, Stelios C. Tsinontides, Michael Kopcha

    Continuous manufacturing (CM) sends materials directly and continuously to the next step of a process, eliminating hold times and reducing processing times. The potential benefits of CM include improved product quality, reduced waste, lower costs, and increased manufacturing flexibility and...

  2. The role of digital twins in driving sustainability

    29 Oct 2024 | Peer-reviewed journal | Contributor(s): Deborah McElhone, Barrie Cassey, Kamal Abu-Hassan

    As the pharmaceutical sector endeavours to become more sustainable, we hear how digital twins – virtual replicas of systems or products that can help predict performance – are supporting the industry in its efforts.

  3. Development of a high-fidelity digital twin using the discrete element method for a continuous direct compression process. Part 1. Calibration workflow

    24 Oct 2024 | Peer-reviewed journal | Contributor(s): Peter Toson, Marko Matić, Theresa Hörmann-Kincses, Michela Beretta, Jakob Rehrl, Johannes Poms, Thomas O’Connor, Abdollah Koolivand, Geng Tian, Scott M. Krull, Johannes G. Khinast, Dalibor Jajcevic, Johan Remmelgas

    In this work, a high-fidelity digital twin was developed to support the design and testing of control strategies for drug product manufacturing via direct compression. The high-fidelity digital twin platform was based on typical pharmaceutical equipment, materials, and direct compression...

  4. Continuous Processing. Continuous Evolution

    08 Oct 2024 | Magazine | Contributor(s): Douglas Hausner

    Continuous processing for small molecule products has been a hot topic for years, but where does the industry stand with it today? We speak with Doug Hausner, Senior Manager, Continuous Manufacturing, Oral Solid Dose, Pharma Services at Thermo Fisher Scientific, to find out.

  5. Continuous micro feeding and mixing of solid dosage forms under vibrational excitation

    08 Oct 2024 | Peer-reviewed journal | Contributor(s): Haifeng Lu, Liang Zhang, Hui Du, Xiaolei Guo, Haifeng Liu

    Continuous manufacturing has intrigued many researchers in the pharmaceutical industry in the post-COVID-19 world. We experimentally studied the discharge characteristics of pharmaceutical excipients under vibrational excitation. The successful accurate dosing and filling of powders at fill...

  6. Continuous manufacturing: Changing the paradigm in the pharmaceutical manufacturing sector

    23 Sep 2024 | Magazine | Contributor(s): Indu Bhushan

    The author explains how continuous manufacturing is reshaping pharmaceutical production

  7. Systematic investigation of the impact of screw elements in continuous wet granulation

    10 Sep 2024 | Peer-reviewed journal | Contributor(s): Katharina Kiricenko, Peter Kleinebudde, Robin Meier

    Twin-screw wet granulation (TSG) is a continuous manufacturing technique either for granules as final dosage form or as an intermediate before tableting or capsule filling. A comprehensive process understanding is required to implement TSG, considering various parameters influencing granule and...

  8. The Rise of Continuous Manufacturing in Pharma

    13 Aug 2024 | Website | Contributor(s): Editorial Team

    "Mr Indu Bhushan, CEO and Director of STEERLife shares his insights on the transformative journey of continuous manufacturing, and the advanced technologies that have propelled this paradigm shift. He also throws light on how continuous manufacturing has accelerated drug development...

  9. Critical review on the role of excipient properties in pharmaceutical powder-to-tablet continuous manufacturing

    13 Aug 2024 | Peer-reviewed journal | Contributor(s): Sara Fathollahi, Pauline H. M. Janssen, Bastiaan H. J. Dickhoff, Henderik W. Frijlink

    The pharmaceutical industry is gradually changing batch-wise manufacturing processes to continuous manufacturing processes, due to the advantages it has to offer. The final product quality and process efficiency of continuous manufacturing processes is among others impacted by the properties of...

  10. Process intensification of pharmaceutical powder blending at commercial throughputs by utilizing semi-continuous mini-blending

    13 Aug 2024 | Peer-reviewed journal | Contributor(s): Maarten Jaspers, Florian Tegel, Timo P. Roelofs, Fabian Starsich, Yunfei Li Song, Bernhard Meir, Richard Elkes, Bastiaan H.J. Dickhoff

    Process intensification involves the miniaturization of equipment while retaining process throughput and performance. The pharmaceutical industry can benefit from this approach especially during drug product development, where the availability of active pharmaceutical ingredients (API) is often...

  11. The Use of a Closed Feed Frame for the Development of Near-Infrared Spectroscopic Calibration Model to Determine Drug Concentration

    23 Jul 2024 | Peer-reviewed journal | Contributor(s): Movilla-Meza, Nathaly A., Sierra-Vega, Nobel O., Alvarado-Hernández, Bárbara B., Méndez, Rafael, Romañach, Rodolfo J.

    Purpose: This study evaluates the use of the closed feed frame as a material sparing approach to develop near-infrared (NIR) spectroscopic calibration models for monitoring blend uniformity. The effect of shear induced by recirculation on NIR spectra was also studied. Methods: Calibration models...

  12. Continuous Manufacturing in the Pharmaceutical Industry: Enhancing Drug Production

    23 Jul 2024 | Website | Contributor(s): Timmerman, Siebe

    A significant shift towards continuous manufacturing (CM) is currently underway in the pharmaceutical industry. Unlike the more commonly used batch processing, CM operates continuously. This method potentially offers increased efficiency, agility, and flexibility in the manufacturing of drug...

  13. Cleaning of direct compression continuous manufacturing equipment through displacement of API residues by excipients

    23 Jul 2024 | Peer-reviewed journal | Contributor(s): Patel, Dhavalkumar S, Méndez, Rafael, Romañach, Rodolfo J

    This feasibility study evaluates a cleaning process designed to avoid the use of detergents and reduce operator exposure to the active pharmaceutical ingredient (API). The continuous manufacturing equipment was cleaned using excipients to displace ibuprofen residues from the system. The cleaning...

  14. Development of a Continuous Flow Grignard Reaction to Manufacture a Key Intermediate of Ipatasertib

    25 Jun 2024 | Peer-reviewed journal | Contributor(s): Kaldre, Dainis, Stocker, Severin, Linder, David, Reymond, Helena, Schuster, Andreas, Lamerz, Jens, Hildbrand, Stefan, Püntener, Kurt, Berry, Malcolm, Sedelmeier, Jörg

    This article outlines the development of a continuous flow process for the manufacture of a key intermediate of the active pharmaceutical ingredient ipatasertib for the treatment of metastatic castration-resistant prostate cancer and triple-negative metastatic breast cancer. The reaction sequence...

  15. Improvement of a pharmaceutical powder mixing process in a tote blender via DEM simulations

    04 Jun 2024 | Peer-reviewed journal | Contributor(s): Benedict Benque, Luca Orefice, Thomas Forgber, Matthias Habeler, Beate Schmid, Johan Remmelgas, Johannes Khinast

    An industrial-scale pharmaceutical powder blending process was studied via discrete element method (DEM) simulations. A DEM model of two active pharmaceutical ingredient (API) components and a combined excipient component was calibrated by matching the simulated response in a dynamic angle of...

  16. Embracing continuous manufacturing in the pharmaceutical industry

    03 Jun 2024 | Website | Contributor(s): Joelle Anselmo

    "Drugmakers have been slow to adopt the production process, which experts say can streamline operations, boost data quality and reduce time to market."

  17. A modified Kushner-Moore approach to characterising small-scale blender performance impact on tablet compaction

    03 Jun 2024 | Peer-reviewed journal | Contributor(s): Hikaru G. Jolliffe, Martin Prostredny, Carlota Mendez Torrecillas, Ecaterina Bordos, Collette Tierney, Ebenezer Ojo, Richard Elkes, Gavin Reynolds, Yunfei Li Song, Bernhard Meir, Sara Fathollahi, John Robertson

    Continuous Direct Compaction (CDC) has emerged as a promising route towards producing solid dosage forms while reducing material, development time and energy consumption. Understanding the response of powder processing unit operations, especially blenders, is crucial. There is a substantial body...

  18. Innovation and Continuous Improvement in Pharmaceutical Manufacturing

    28 Mar 2024 | Document | Contributor(s): Ajaz Hussain (Chairperson) Raafat Fahmy (CVM), William Bargo (CVM), Robert Coleman, Robert (ORA), Elise Murphy (ORA), Frank Holcombe Jr (CDER), Chris Watts (CDER), See Lam (CDER), Jon Clark (CDER), Christopher Joneckis (CBER), John Dietrick (CDER), Diana Kolaitis (ORA), Vilayat Sayeed (CDER), Mai Huynh (CVM), Norman Schmuff (CDER), Andrew Chang (CBER)

    The PAT Team and Manufacturing Science Working Group Report: A Summary of Learning, Contributions and Proposed Next Steps for Moving towards the "Desired State" of Pharmaceutical Manufacturing in the 21st Century

  19. Innovation and Continuous Improvement in Pharmaceutical Manufacturing

    28 Mar 2024 | Document | Contributor(s): Ajaz Hussain (Chairperson) Raafat Fahmy (CVM), William Bargo (CVM), Robert Coleman, Robert (ORA), Elise Murphy (ORA), Frank Holcombe Jr (CDER), Chris Watts (CDER), See Lam (CDER), Jon Clark (CDER), Christopher Joneckis (CBER), John Dietrick (CDER), Diana Kolaitis (ORA), Vilayat Sayeed (CDER), Mai Huynh (CVM), Norman Schmuff (CDER), Andrew Chang (CBER)

    The PAT Team and Manufacturing Science Working Group Report: A Summary of Learning, Contributions and Proposed Next Steps for Moving towards the "Desired State" of Pharmaceutical Manufacturing in the 21st Century

  20. A Perspective on Quality by Design: A Preclinical Opportunity

    28 Mar 2024 | Document | Contributor(s): Ajaz S. Hussain

  21. A Shared Vision for Pharmaceutical Development and Manufacturing in the 21st Century: Contributions of the PAT Initiative

    28 Mar 2024 | Document | Contributor(s): Ajaz S. Hussain

  22. A Shared Vision for Pharmaceutical Development and Manufacturing in the 21st Century: Contributions of the PAT Initiative

    28 Mar 2024 | Document | Contributor(s): Ajaz S. Hussain

  23. The Subcommittee on Process Analytical Technologies (PAT): Closing Remarks

    28 Mar 2024 | Document | Contributor(s): Ajaz S. Hussain

  24. The Process Analytical Technology Initiative: PAT and the Pharmacopeias

    28 Mar 2024 | Document | Contributor(s): Ajaz S. Hussain

    The PAT Initiative A part of the Pharmaceutical Quality for the 21st Century Initiative  PAT and the USP Opportunities for the USP to support the PAT Framework

  25. Utilizing PAT to Monitor and Control Bulk Biotech Processes

    27 Mar 2024 | Document | Contributor(s): Rick E. Cooley

    1.What is and isn’t PAT? 2.Implementing PAT in Manufacturing: What does it take? 3.Characteristics of bulk, biotech API processes 4.Why PAT? 5.Review of PAT technologies utilized 6.PAT application examples