Skip to main content
Join CMKC members for a complimentary virtual event on December 10, 11am ET: CM MythBusters: https://bit.ly/3YXJynA. This is a fantastic opportunity to connect, collaborate, and debunk common myths about continuous manufacturing!
18.188.13.127

Resources: All

Find a resource
  1. oralsoliddose x
  2. control x
  3. processanalyticaltechnology x
  4. pat x
  5. nearinfraredspectroscopy x
  1. Development of a high-fidelity digital twin using the discrete element method for a continuous direct compression process. Part 1. Calibration workflow

    24 Oct 2024 | Peer-reviewed journal | Contributor(s): Peter Toson, Marko Matić, Theresa Hörmann-Kincses, Michela Beretta, Jakob Rehrl, Johannes Poms, Thomas O’Connor, Abdollah Koolivand, Geng Tian, Scott M. Krull, Johannes G. Khinast, Dalibor Jajcevic, Johan Remmelgas

    In this work, a high-fidelity digital twin was developed to support the design and testing of control strategies for drug product manufacturing via direct compression. The high-fidelity digital twin platform was based on typical pharmaceutical equipment, materials, and direct compression...

  2. Continuous Processing. Continuous Evolution

    08 Oct 2024 | Magazine | Contributor(s): Douglas Hausner

    Continuous processing for small molecule products has been a hot topic for years, but where does the industry stand with it today? We speak with Doug Hausner, Senior Manager, Continuous Manufacturing, Oral Solid Dose, Pharma Services at Thermo Fisher Scientific, to find out.

  3. Continuous Processing. Continuous Evolution

    08 Oct 2024 | Magazine | Contributor(s): Douglas Hausner

    Continuous processing for small molecule products has been a hot topic for years, but where does the industry stand with it today? We speak with Doug Hausner, Senior Manager, Continuous Manufacturing, Oral Solid Dose, Pharma Services at Thermo Fisher Scientific, to find out.

  4. Continuous micro feeding and mixing of solid dosage forms under vibrational excitation

    08 Oct 2024 | Peer-reviewed journal | Contributor(s): Haifeng Lu, Liang Zhang, Hui Du, Xiaolei Guo, Haifeng Liu

    Continuous manufacturing has intrigued many researchers in the pharmaceutical industry in the post-COVID-19 world. We experimentally studied the discharge characteristics of pharmaceutical excipients under vibrational excitation. The successful accurate dosing and filling of powders at fill...

  5. Pharmaceutical Continuous Manufacturing: Content Uniformity With PAT And RTR

    16 Sep 2024 | Website | Contributor(s): Richard Steiner

    In pharmaceutical continuous manufacturing (PCM), technical solutions ensuring critical quality attributes for content uniformity and unit dose exist for online, in-line, and at-line measurements. Process analytical technology (PAT) allows in-line measurement and control of critical process...

  6. Systematic investigation of the impact of screw elements in continuous wet granulation

    10 Sep 2024 | Peer-reviewed journal | Contributor(s): Katharina Kiricenko, Peter Kleinebudde, Robin Meier

    Twin-screw wet granulation (TSG) is a continuous manufacturing technique either for granules as final dosage form or as an intermediate before tableting or capsule filling. A comprehensive process understanding is required to implement TSG, considering various parameters influencing granule and...

  7. The Use of a Closed Feed Frame for the Development of Near-Infrared Spectroscopic Calibration Model to Determine Drug Concentration

    23 Jul 2024 | Peer-reviewed journal | Contributor(s): Movilla-Meza, Nathaly A., Sierra-Vega, Nobel O., Alvarado-Hernández, Bárbara B., Méndez, Rafael, Romañach, Rodolfo J.

    Purpose: This study evaluates the use of the closed feed frame as a material sparing approach to develop near-infrared (NIR) spectroscopic calibration models for monitoring blend uniformity. The effect of shear induced by recirculation on NIR spectra was also studied. Methods: Calibration models...

  8. Cleaning of direct compression continuous manufacturing equipment through displacement of API residues by excipients

    23 Jul 2024 | Peer-reviewed journal | Contributor(s): Patel, Dhavalkumar S, Méndez, Rafael, Romañach, Rodolfo J

    This feasibility study evaluates a cleaning process designed to avoid the use of detergents and reduce operator exposure to the active pharmaceutical ingredient (API). The continuous manufacturing equipment was cleaned using excipients to displace ibuprofen residues from the system. The cleaning...

  9. Blend uniformity monitoring in a continuous manufacturing mixing process for a low-dosage formulation using a stream sampler and near infrared spectroscopy

    19 Jul 2024 | Peer-reviewed journal | Contributor(s): Rodolfo Romanach, Raúl S. Rangel-Gil, Juan M. Nasrala-Álvarez, Rafael Méndez

    Continuous manufacturing has the potential to offer several benefits for the production of oral solid dosage forms, including reduced costs, low-scale equipment, and the application of process analytical technology (PAT) for real-time process control. This study focuses on the implementation of...

  10. Development of a Continuous Flow Grignard Reaction to Manufacture a Key Intermediate of Ipatasertib

    25 Jun 2024 | Peer-reviewed journal | Contributor(s): Kaldre, Dainis, Stocker, Severin, Linder, David, Reymond, Helena, Schuster, Andreas, Lamerz, Jens, Hildbrand, Stefan, Püntener, Kurt, Berry, Malcolm, Sedelmeier, Jörg

    This article outlines the development of a continuous flow process for the manufacture of a key intermediate of the active pharmaceutical ingredient ipatasertib for the treatment of metastatic castration-resistant prostate cancer and triple-negative metastatic breast cancer. The reaction sequence...

  11. Improvement of a pharmaceutical powder mixing process in a tote blender via DEM simulations

    04 Jun 2024 | Peer-reviewed journal | Contributor(s): Benedict Benque, Luca Orefice, Thomas Forgber, Matthias Habeler, Beate Schmid, Johan Remmelgas, Johannes Khinast

    An industrial-scale pharmaceutical powder blending process was studied via discrete element method (DEM) simulations. A DEM model of two active pharmaceutical ingredient (API) components and a combined excipient component was calibrated by matching the simulated response in a dynamic angle of...

  12. Development and Application of Control Concepts for Twin-Screw Wet Granulation in the ConsiGmaTM-25: Part 2 Granule Size

    04 Jun 2024 | Peer-reviewed journal | Contributor(s): Selma Celikovic, Johannes Poms, Johannes Khinast, Martin Horn, Jakob Rehrl

    Traditional operation modes, such as running the production processes at constant process settings or within a narrow design space, do not fully exploit the advantages of continuous pharmaceutical manufacturing. Integrating Quality by Control (QbC) algorithms as a standard component of...

  13. A modified Kushner-Moore approach to characterising small-scale blender performance impact on tablet compaction

    03 Jun 2024 | Peer-reviewed journal | Contributor(s): Hikaru G. Jolliffe, Martin Prostredny, Carlota Mendez Torrecillas, Ecaterina Bordos, Collette Tierney, Ebenezer Ojo, Richard Elkes, Gavin Reynolds, Yunfei Li Song, Bernhard Meir, Sara Fathollahi, John Robertson

    Continuous Direct Compaction (CDC) has emerged as a promising route towards producing solid dosage forms while reducing material, development time and energy consumption. Understanding the response of powder processing unit operations, especially blenders, is crucial. There is a substantial body...

  14. A Focused and Flexible Analytical Strategy is Key to Unlocking the Benefits of Continuous Manufacturing

    11 Apr 2024 | Website | Contributor(s): Bikash Chatterjee

    Continuous manufacturing processes promise shorter manufacturing cycle times without the need for intermediate storage, sampling testing and release of intermediate process steps, and shorter product release times through the intelligent application of in-line and at-line testing strategies....

  15. Innovation and Continuous Improvement in Pharmaceutical Manufacturing

    28 Mar 2024 | Document | Contributor(s): Ajaz Hussain (Chairperson) Raafat Fahmy (CVM), William Bargo (CVM), Robert Coleman, Robert (ORA), Elise Murphy (ORA), Frank Holcombe Jr (CDER), Chris Watts (CDER), See Lam (CDER), Jon Clark (CDER), Christopher Joneckis (CBER), John Dietrick (CDER), Diana Kolaitis (ORA), Vilayat Sayeed (CDER), Mai Huynh (CVM), Norman Schmuff (CDER), Andrew Chang (CBER)

    The PAT Team and Manufacturing Science Working Group Report: A Summary of Learning, Contributions and Proposed Next Steps for Moving towards the "Desired State" of Pharmaceutical Manufacturing in the 21st Century

  16. Innovation and Continuous Improvement in Pharmaceutical Manufacturing

    28 Mar 2024 | Document | Contributor(s): Ajaz Hussain (Chairperson) Raafat Fahmy (CVM), William Bargo (CVM), Robert Coleman, Robert (ORA), Elise Murphy (ORA), Frank Holcombe Jr (CDER), Chris Watts (CDER), See Lam (CDER), Jon Clark (CDER), Christopher Joneckis (CBER), John Dietrick (CDER), Diana Kolaitis (ORA), Vilayat Sayeed (CDER), Mai Huynh (CVM), Norman Schmuff (CDER), Andrew Chang (CBER)

    The PAT Team and Manufacturing Science Working Group Report: A Summary of Learning, Contributions and Proposed Next Steps for Moving towards the "Desired State" of Pharmaceutical Manufacturing in the 21st Century

  17. A Perspective on Quality by Design: A Preclinical Opportunity

    28 Mar 2024 | Document | Contributor(s): Ajaz S. Hussain

  18. A Perspective on Quality by Design: A Preclinical Opportunity

    28 Mar 2024 | Document | Contributor(s): Ajaz S. Hussain

  19. A Shared Vision for Pharmaceutical Development and Manufacturing in the 21st Century: Contributions of the PAT Initiative

    28 Mar 2024 | Document | Contributor(s): Ajaz S. Hussain

  20. A Shared Vision for Pharmaceutical Development and Manufacturing in the 21st Century: Contributions of the PAT Initiative

    28 Mar 2024 | Document | Contributor(s): Ajaz S. Hussain

  21. The Subcommittee on Process Analytical Technologies (PAT): Closing Remarks

    28 Mar 2024 | Document | Contributor(s): Ajaz S. Hussain

  22. The Subcommittee on Process Analytical Technologies (PAT): Closing Remarks

    28 Mar 2024 | Document | Contributor(s): Ajaz S. Hussain

  23. The Process Analytical Technology Initiative: PAT and the Pharmacopeias

    28 Mar 2024 | Document | Contributor(s): Ajaz S. Hussain

    The PAT Initiative A part of the Pharmaceutical Quality for the 21st Century Initiative  PAT and the USP Opportunities for the USP to support the PAT Framework

  24. The Process Analytical Technology Initiative: PAT and the Pharmacopeias

    28 Mar 2024 | Document | Contributor(s): Ajaz S. Hussain

    The PAT Initiative A part of the Pharmaceutical Quality for the 21st Century Initiative  PAT and the USP Opportunities for the USP to support the PAT Framework

  25. Utilizing PAT to Monitor and Control Bulk Biotech Processes

    27 Mar 2024 | Document | Contributor(s): Rick E. Cooley

    1.What is and isn’t PAT? 2.Implementing PAT in Manufacturing: What does it take? 3.Characteristics of bulk, biotech API processes 4.Why PAT? 5.Review of PAT technologies utilized 6.PAT application examples