Skip to main content
Join CMKC members for a complimentary virtual event on December 10, 11am ET: CM MythBusters: https://bit.ly/3YXJynA. This is a fantastic opportunity to connect, collaborate, and debunk common myths about continuous manufacturing!
13.59.73.248

Resources: All

Find a resource
  1. nearinfraredspectroscopy x
  2. continuouspharmaceuticalmanufacturing x
  3. crystallization x
  4. modeling x
  1. Matrix-assisted cocrystallization (MAC) simultaneous production and formulation of pharmaceutical cocrystals by hot-melt extrusion

    23 Jul 2024 | Contributor(s): Boksa, Kevin, Otte, Andrew, Pinal, Rodolfo

    A novel method for the simultaneous production and formulation of pharmaceutical cocrystals, matrix-assisted cocrystallization (MAC), is presented. Hot-melt extrusion (HME) is used to create cocrystals by coprocessing the drug and coformer in the presence of a matrix material. Carbamazepine...

  2. The Use of a Closed Feed Frame for the Development of Near-Infrared Spectroscopic Calibration Model to Determine Drug Concentration

    23 Jul 2024 | Contributor(s): Movilla-Meza, Nathaly A., Sierra-Vega, Nobel O., Alvarado-Hernández, Bárbara B., Méndez, Rafael, Romañach, Rodolfo J.

    Purpose: This study evaluates the use of the closed feed frame as a material sparing approach to develop near-infrared (NIR) spectroscopic calibration models for monitoring blend uniformity. The effect of shear induced by recirculation on NIR spectra was also studied. Methods: Calibration models...

  3. Cleaning of direct compression continuous manufacturing equipment through displacement of API residues by excipients

    23 Jul 2024 | Contributor(s): Patel, Dhavalkumar S, Méndez, Rafael, Romañach, Rodolfo J

    This feasibility study evaluates a cleaning process designed to avoid the use of detergents and reduce operator exposure to the active pharmaceutical ingredient (API). The continuous manufacturing equipment was cleaned using excipients to displace ibuprofen residues from the system. The cleaning...

  4. Axial Chirality in the Sotorasib Drug Substance, Part 2: Leveraging a High-Temperature Thermal Racemization to Recycle the Classical Resolution Waste Stream

    25 Jun 2024 | Contributor(s): Beaver, Matthew G., Brown, Derek B., Campbell, Kiersten, Fang, Yuan-Qing, Ford, David D., Mardirossian, Narbe, Nagy, Kevin D., Rötheli, Andreas R., Sheeran, Jillian W., Telmesani, Reem, Parsons, Andrew T.

    The development and kilogram-scale demonstration of a high-temperature continuous-flow racemization process to recycle the off-enantiomer of an atropisomeric sotorasib intermediate is described. Part 1 of this two-part series details the design and execution of a classical resolution to generate...

  5. Development and Scale-Up of a Continuous Manufacturing Process for a Hydrazine Condensation Reaction

    25 Jun 2024 | Contributor(s): Zhu, Ruiheng, Reddy, Ramesh, Ding, Man, Xu, Ming, Deng, Chaoyi, Tadayon, Sam, Li, Hui, Depew, Kristopher, Lane, Benjamin

    The development of a continuous manufacturing process for a hydrazine condensation reaction at high temperature is reported. This continuous process represents a safer approach to manufacture 3-phenyl-1H-pyrazol-5-amine at scale and exhibits better impurity control compared to a traditional batch...

  6. A Virtual Plant for Integrated Continuous Manufacturing of a Carfilzomib Drug Substance Intermediate, Part 3: Manganese-Catalyzed Asymmetric Epoxidation, Crystallization, and Filtration

    25 Jun 2024 | Contributor(s): Maloney, Andrew J., Içten, Elçin, Capellades, Gerard, Beaver, Matthew G., Zhu, Xiaoxiang, Graham, Lauren R., Brown, Derek B., Griffin, Daniel J., Sangodkar, Rahul, Allian, Ayman, Huggins, Seth, Hart, Roger, Rolandi, Pablo, Walker, Shawn D., Braatz, Richard D.

    This article describes the process characterization and development of models to inform a process control strategy to prepare (R,R)-epoxy ketone 2, an intermediate in the manufacture of carfilzomib. Model calibration for relevant unit operations and the development of a dynamic integrated...

  7. Development and Scale-Up of a Continuous, High-Pressure, Asymmetric Hydrogenation Reaction, Workup, and Isolation

    25 Jun 2024 | Contributor(s): Johnson, Martin D., May, Scott A., Calvin, Joel R., Remacle, Jacob, Stout, James R., Diseroad, William D., Zaborenko, Nikolay, Haeberle, Brian D., Sun, Wei-Ming, Miller, Michael T., Brennan, John

    A fully continuous process including an asymmetric hydrogenation reaction operating at 70 bar hydrogen, aqueous extraction, and crystallization was designed, developed, and demonstrated at pilot scale. This paper highlights safety, quality, and throughput advantages of the continuous reaction and...

  8. Polymorphs, Particle Size, and a Pandemic: Development of a Scalable Crystallization Process for Molnupiravir, an Antiviral for the Treatment of COVID-19

    25 Jun 2024 | Contributor(s): Bade, Rachel, Bothe, Jameson R., Sirota, Eric, Brunskill, Andrew P. J., Newman, Justin A., Zhang, Yongqian, Tan, Melissa, Zheng, Michelle, Brito, Gilmar, Poirier, Marc, Fier, Patrick S., Xu, Yingju, Ward, Michael D., Stone, Kevin, Lee, Ivan H., Gmitter, Andrew J., Bernardoni, Frank, Zompa, Michael A., Luo, Hanlin, Patel, Sanjaykumar, Masiuk, Tina, Mora, Jeff, Ni, Tong, Okoh, Grace A., Tarabokija, James, Liu, Jiaying, Lowinger, Michael B., Mahmood, Tariq

    Molnupiravir is a small-molecule active pharmaceutical ingredient (API) prodrug of a nucleoside analog that was demonstrated to be efficacious for the treatment of patients with COVID-19. Early in the pandemic, Merck & Co. Inc. partnered with Ridgeback Biotherapeutics to accelerate the...

  9. Development of a Continuous Schotten–Baumann Route to an Acyl Sulfonamide

    24 Apr 2024 | Contributor(s): White, Timothy D., Berglund, K. Derek, Groh, Jennifer McClary, Johnson, Martin D., Yates, Matthew H.

    The development and scale-up of a synthetic route to tasisulam sodium (5-bromo-thiophene-2-sulfonic acid 2,4-dichlorobenzoylamide sodium salt, hereafter referred to as tasisulam) utilizing continuous Schotten–Baumann reaction conditions is disclosed. A new synthetic route for the cytotoxic API...

  10. Development of a Multi-Step Synthesis and Workup Sequence for an Integrated, Continuous Manufacturing Process of a Pharmaceutical

    24 Apr 2024 | Contributor(s): Heider, Patrick L., Born, Stephen C., Basak, Soubir, Benyahia, Brahim, Lakerveld, Richard, Zhang, Haitao, Hogan, Rachael, - Buchbinder, Louis, Wolfe, Aaron, Mascia, Salvatore, Evans, James M. B., Jamison, Timothy F., Jensen, Klavs F.

    The development and operation of the synthesis and workup steps of a fully integrated, continuous manufacturing plant for synthesizing aliskiren, a small molecule pharmaceutical, are presented. The plant started with advanced intermediates, two synthetic steps away from the final active...

  11. Videometric mass flow control: A new method for real-time measurement and feedback control of powder micro-feeding based on image analysis

    09 Jun 2023 | Contributor(s): Madarasz, L, Kote, AGyurkes, M, Farkas, A, Hambalko, B, Pataki, H, Fulop, G, Marosi, G, Lengyel, L, Casian, T, Csorba, K, Nagy, ZK

    The present paper reports the first monitoring and control of ultra-low dose powder feeding using a camera image-based mass flow measurement system. Caffeine was fed via a single-screw microfeeder as a model active pharmaceutical ingredient (API). The mass, mass flow and sizes of the particles...

  12. Using a material property library to find surrogate materials for pharmaceutical process development

    09 Jun 2023 | Contributor(s): Escotet-Espinoza, MS, Moghtadernejad, SScicolone, J, Wang, YF, Pereira, G, Schafer, E, Vigh, T, Klingeleers, D, Ierapetritou, M, Muzzio, FJ

    Material properties are known to have a significant impact on pharmaceutical manufacturing performance, particularly for solid product processes. Evaluating the performance of a specific material, for example an active pharmaceutical ingredient or excipient, is critical during development stages...

  13. Using residence time distribution in pharmaceutical solid dose manufacturing–A critical review

    09 Jun 2023 | Contributor(s): Bhalode, Pooja, Tian, Huayu Gupta, Shashwat Razavi, Sonia M Roman-Ospino, Andres Talebian, Shahrzad Singh, Ravendra Scicolone, James V Muzzio, Fernando J, Ierapetritou, Marianthi

    While continuous manufacturing (CM) of pharmaceutical solid-based drug products has been shown to be advantageous for improving the product quality and process efficiency in alignment with FDA’s support of the quality-by-design paradigm (Lee, 2015; Ierapetritou et al., 2016; Plumb, 2005; Schaber,...

  14. Using online mass spectrometry to predict the end point during drying of pharmaceutical products

    09 Jun 2023 | Contributor(s): Dodda, Aditya G., Saranteas, Kostas, Henson, Michael A.

    Drying of active pharmaceutical ingredients (APIs) is an energy-intensive process that is often a manufacturing bottleneck due to the relatively long processing times. A key objective is the ability to determine the drying end point, the time at which all solvent has been evaporated from the...

  15. Using residence time distribution in pharmaceutical solid dose manufacturing–A critical review

    09 Jun 2023 | Contributor(s): Bhalode, Pooja, Tian, Huayu Gupta, Shashwat Razavi, Sonia M Roman-Ospino, Andres Talebian, Shahrzad Singh, Ravendra Scicolone, James V Muzzio, Fernando J, Ierapetritou, Marianthi

    While continuous manufacturing (CM) of pharmaceutical solid-based drug products has been shown to be advantageous for improving the product quality and process efficiency in alignment with FDA’s support of the quality-by-design paradigm (Lee, 2015; Ierapetritou et al., 2016; Plumb, 2005; Schaber,...

  16. Understanding API Static Drying with Hot Gas Flow: Design and Test of a Drying Rig Prototype and Drying Modeling Development

    09 Jun 2023 | Contributor(s): Ottoboni, S, Coleman, SJSteven, C, Siddique, M, Fraissinet, M, Joannes, M, Laux, A, Barton, A, Firth, P, Price, CJ, Mulheran, PA

    Developing a continuous isolation process to produce a pure, dry, free-flowing active pharmaceutical ingredient (API) is the final barrier to the implementation of continuous end-to-end pharmaceutical manufacturing. Recent work has led to the development of continuous filtration and washing...

  17. Thin-Film Evaporator Model for Continuous Active Pharmaceutical Ingredient Manufacturing

    09 Jun 2023 | Contributor(s): Lee, BW, Yin, KHSplaine, K, Roesch, B

    Thin-film evaporator (TFE) is a popular continuous distillation/evaporation technology for pharmaceutical and fine chemical industries and has several equipment and process configurations that make fundamental modeling approaches very challenging. Specifically, moving wipers and lack of fluid...

  18. The scope of PAT in real-time advanced control of tablet quality

    09 Jun 2023 | Contributor(s): Singh, Ravendra, Ierapetritou, Marianthi, Ramachandran, Rohit

    Continuous pharmaceutical manufacturing together with process analytical technology (PAT) provides a suitable platform for automatic feed-forward/feed-back (FF/FB) control of the end product quality as desired by quality by design (QbD)-based efficient manufacturing. The precise control of the...

  19. The Use of Near-Infrared and Microwave Resonance Sensing to Monitor a Continuous Roller Compaction Process

    09 Jun 2023 | Contributor(s): Austin, John, Gupta, Anshu, Mcdonnell, Ryan, Reklaitis, Gintaras V., Harris, Michael T

    Roller compaction is commonly used in the pharmaceutical and nutraceutical industries to increase and narrow the size distribution of a particulate material, making it easier to process. Both the moisture content of the material and the density of the roller compacted ribbon affect the uniformity...

  20. Technoeconomic Optimization of Continuous Crystallization for Three Active Pharmaceutical Ingredients: Cyclosporine, Paracetamol, and Aliskiren

    09 Jun 2023 | Contributor(s): Diab, S, Gerogiorgis, DI

    Mixed suspension, mixed product removal (MSMPR) crystallizers are widely implemented for the continuous crystallization of active pharmaceutical ingredients (APIs), allowing enhanced efficiency, flexibility, and product quality compared to currently dominant batch crystallizer designs....

  21. Technoeconomic Optimization of a Conceptual Flowsheet for Continuous Separation of an Analgaesic Active Pharmaceutical Ingredient (API)

    09 Jun 2023 | Contributor(s): Jolliffe, HG, Gerogiorgis, DI

    Continuous Pharmaceutical Manufacturing (CPM) has recently emerged as a promising alternative to current batch production methods, which require significant expenditures in order to ensure product quality and process reliability. Advances in new continuous synthesis routes, demonstrations of full...

  22. Systematic Framework for Design and Adaption of Fast, Flexible, Continuous Modular Plants

    09 Jun 2023 | Contributor(s): Singh, Ravendra, Gernaey, Krist Gani, Rafiqul, Woodley, John

    Not available

  23. Systematic framework for implementation of material traceability into continuous pharmaceutical tablet manufacturing process

    09 Jun 2023 | Contributor(s): Billups, Matthew, Singh, Ravendra

    Purpose: With the applications of more advanced manufacturing technologies being applied to the pharmaceutical industry, continuous processes are at the forefront of innovation. One area that is highly desired to be systematically investigated is material traceability in continuous manufacturing...

  24. Systematic substrate adoption methodology (SAM) for future flexible, generic pharmaceutical production processes

    09 Jun 2023 | Contributor(s): Singh, Ravendra, Godfrey, Andy Gregertsen, Björn Muller, Frans Gernaey, Krist V Gani, Rafiqul, Woodley, John M

    The discovery of an effective and safe pharmaceutical product is based on success in clinical trials. Often, several candidate compounds targeting the same disease area are tested in order to identify the most efficacious products. This involves the manufacture of small quantities of compounds...

  25. System-wide hybrid MPC–PID control of a continuous pharmaceutical tablet manufacturing process via direct compaction

    09 Jun 2023 | Contributor(s): Singh, Ravendra, Ierapetritou, Marianthi, Ramachandran, Rohit

    The next generation of QbD based pharmaceutical products will be manufactured through continuous processing. This will allow the integration of online/inline monitoring tools, coupled with an efficient advanced model-based feedback control systems, to achieve precise control of process variables,...