Skip to main content
Join CMKC members for a complimentary virtual event on December 10, 11am ET: CM MythBusters: https://bit.ly/3YXJynA. This is a fantastic opportunity to connect, collaborate, and debunk common myths about continuous manufacturing!
3.138.69.101

Resources: All

Find a resource
  1. processanalyticaltechnology x
  2. modeling x
  3. continuouspharmaceuticalmanufacturing x
  4. crystallization x
  1. Matrix-assisted cocrystallization (MAC) simultaneous production and formulation of pharmaceutical cocrystals by hot-melt extrusion

    23 Jul 2024 | Contributor(s): Boksa, Kevin, Otte, Andrew, Pinal, Rodolfo

    A novel method for the simultaneous production and formulation of pharmaceutical cocrystals, matrix-assisted cocrystallization (MAC), is presented. Hot-melt extrusion (HME) is used to create cocrystals by coprocessing the drug and coformer in the presence of a matrix material. Carbamazepine...

  2. Axial Chirality in the Sotorasib Drug Substance, Part 2: Leveraging a High-Temperature Thermal Racemization to Recycle the Classical Resolution Waste Stream

    25 Jun 2024 | Contributor(s): Beaver, Matthew G., Brown, Derek B., Campbell, Kiersten, Fang, Yuan-Qing, Ford, David D., Mardirossian, Narbe, Nagy, Kevin D., Rötheli, Andreas R., Sheeran, Jillian W., Telmesani, Reem, Parsons, Andrew T.

    The development and kilogram-scale demonstration of a high-temperature continuous-flow racemization process to recycle the off-enantiomer of an atropisomeric sotorasib intermediate is described. Part 1 of this two-part series details the design and execution of a classical resolution to generate...

  3. Development and Scale-Up of a Continuous Manufacturing Process for a Hydrazine Condensation Reaction

    25 Jun 2024 | Contributor(s): Zhu, Ruiheng, Reddy, Ramesh, Ding, Man, Xu, Ming, Deng, Chaoyi, Tadayon, Sam, Li, Hui, Depew, Kristopher, Lane, Benjamin

    The development of a continuous manufacturing process for a hydrazine condensation reaction at high temperature is reported. This continuous process represents a safer approach to manufacture 3-phenyl-1H-pyrazol-5-amine at scale and exhibits better impurity control compared to a traditional batch...

  4. Development of a Continuous Flow Grignard Reaction to Manufacture a Key Intermediate of Ipatasertib

    25 Jun 2024 | Contributor(s): Kaldre, Dainis, Stocker, Severin, Linder, David, Reymond, Helena, Schuster, Andreas, Lamerz, Jens, Hildbrand, Stefan, Püntener, Kurt, Berry, Malcolm, Sedelmeier, Jörg

    This article outlines the development of a continuous flow process for the manufacture of a key intermediate of the active pharmaceutical ingredient ipatasertib for the treatment of metastatic castration-resistant prostate cancer and triple-negative metastatic breast cancer. The reaction sequence...

  5. A Virtual Plant for Integrated Continuous Manufacturing of a Carfilzomib Drug Substance Intermediate, Part 3: Manganese-Catalyzed Asymmetric Epoxidation, Crystallization, and Filtration

    25 Jun 2024 | Contributor(s): Maloney, Andrew J., Içten, Elçin, Capellades, Gerard, Beaver, Matthew G., Zhu, Xiaoxiang, Graham, Lauren R., Brown, Derek B., Griffin, Daniel J., Sangodkar, Rahul, Allian, Ayman, Huggins, Seth, Hart, Roger, Rolandi, Pablo, Walker, Shawn D., Braatz, Richard D.

    This article describes the process characterization and development of models to inform a process control strategy to prepare (R,R)-epoxy ketone 2, an intermediate in the manufacture of carfilzomib. Model calibration for relevant unit operations and the development of a dynamic integrated...

  6. Development and Scale-Up of a Continuous, High-Pressure, Asymmetric Hydrogenation Reaction, Workup, and Isolation

    25 Jun 2024 | Contributor(s): Johnson, Martin D., May, Scott A., Calvin, Joel R., Remacle, Jacob, Stout, James R., Diseroad, William D., Zaborenko, Nikolay, Haeberle, Brian D., Sun, Wei-Ming, Miller, Michael T., Brennan, John

    A fully continuous process including an asymmetric hydrogenation reaction operating at 70 bar hydrogen, aqueous extraction, and crystallization was designed, developed, and demonstrated at pilot scale. This paper highlights safety, quality, and throughput advantages of the continuous reaction and...

  7. Polymorphs, Particle Size, and a Pandemic: Development of a Scalable Crystallization Process for Molnupiravir, an Antiviral for the Treatment of COVID-19

    25 Jun 2024 | Contributor(s): Bade, Rachel, Bothe, Jameson R., Sirota, Eric, Brunskill, Andrew P. J., Newman, Justin A., Zhang, Yongqian, Tan, Melissa, Zheng, Michelle, Brito, Gilmar, Poirier, Marc, Fier, Patrick S., Xu, Yingju, Ward, Michael D., Stone, Kevin, Lee, Ivan H., Gmitter, Andrew J., Bernardoni, Frank, Zompa, Michael A., Luo, Hanlin, Patel, Sanjaykumar, Masiuk, Tina, Mora, Jeff, Ni, Tong, Okoh, Grace A., Tarabokija, James, Liu, Jiaying, Lowinger, Michael B., Mahmood, Tariq

    Molnupiravir is a small-molecule active pharmaceutical ingredient (API) prodrug of a nucleoside analog that was demonstrated to be efficacious for the treatment of patients with COVID-19. Early in the pandemic, Merck & Co. Inc. partnered with Ridgeback Biotherapeutics to accelerate the...

  8. Development of a Continuous Schotten–Baumann Route to an Acyl Sulfonamide

    24 Apr 2024 | Contributor(s): White, Timothy D., Berglund, K. Derek, Groh, Jennifer McClary, Johnson, Martin D., Yates, Matthew H.

    The development and scale-up of a synthetic route to tasisulam sodium (5-bromo-thiophene-2-sulfonic acid 2,4-dichlorobenzoylamide sodium salt, hereafter referred to as tasisulam) utilizing continuous Schotten–Baumann reaction conditions is disclosed. A new synthetic route for the cytotoxic API...

  9. Development of a Multi-Step Synthesis and Workup Sequence for an Integrated, Continuous Manufacturing Process of a Pharmaceutical

    24 Apr 2024 | Contributor(s): Heider, Patrick L., Born, Stephen C., Basak, Soubir, Benyahia, Brahim, Lakerveld, Richard, Zhang, Haitao, Hogan, Rachael, - Buchbinder, Louis, Wolfe, Aaron, Mascia, Salvatore, Evans, James M. B., Jamison, Timothy F., Jensen, Klavs F.

    The development and operation of the synthesis and workup steps of a fully integrated, continuous manufacturing plant for synthesizing aliskiren, a small molecule pharmaceutical, are presented. The plant started with advanced intermediates, two synthetic steps away from the final active...

  10. Innovation and Continuous Improvement in Pharmaceutical Manufacturing

    28 Mar 2024 | Document | Contributor(s): Ajaz Hussain (Chairperson) Raafat Fahmy (CVM), William Bargo (CVM), Robert Coleman, Robert (ORA), Elise Murphy (ORA), Frank Holcombe Jr (CDER), Chris Watts (CDER), See Lam (CDER), Jon Clark (CDER), Christopher Joneckis (CBER), John Dietrick (CDER), Diana Kolaitis (ORA), Vilayat Sayeed (CDER), Mai Huynh (CVM), Norman Schmuff (CDER), Andrew Chang (CBER)

    The PAT Team and Manufacturing Science Working Group Report: A Summary of Learning, Contributions and Proposed Next Steps for Moving towards the "Desired State" of Pharmaceutical Manufacturing in the 21st Century

  11. A Perspective on Quality by Design: A Preclinical Opportunity

    28 Mar 2024 | Document | Contributor(s): Ajaz S. Hussain

  12. A Shared Vision for Pharmaceutical Development and Manufacturing in the 21st Century: Contributions of the PAT Initiative

    28 Mar 2024 | Document | Contributor(s): Ajaz S. Hussain

  13. The Subcommittee on Process Analytical Technologies (PAT): Closing Remarks

    28 Mar 2024 | Document | Contributor(s): Ajaz S. Hussain

  14. The Process Analytical Technology Initiative: PAT and the Pharmacopeias

    28 Mar 2024 | Document | Contributor(s): Ajaz S. Hussain

    The PAT Initiative A part of the Pharmaceutical Quality for the 21st Century Initiative  PAT and the USP Opportunities for the USP to support the PAT Framework

  15. Utilizing PAT to Monitor and Control Bulk Biotech Processes

    27 Mar 2024 | Document | Contributor(s): Rick E. Cooley

    1.What is and isn’t PAT? 2.Implementing PAT in Manufacturing: What does it take? 3.Characteristics of bulk, biotech API processes 4.Why PAT? 5.Review of PAT technologies utilized 6.PAT application examples

  16. Continuous Manufacturing for Pharmaceutical Solid Dosage Forms (On-Demand)

    31 Jan 2024 | Seminars | Contributor(s): Atul Dubey, Fernando Muzzio, Gerardo Callegari, Lucy L. Botros, Ravendra Singh, James Scicolone, Andres Roman, Sonia Modarres Razavi

    Course Description: This self-paced curriculum contains fourteen self-paced modules and three recordings of live virtual education on Pharmaceutical Continuous Manufacturing (PCM). Learners will have access to the following: A recording of the introductory session covering topics such as...

  17. Videometric mass flow control: A new method for real-time measurement and feedback control of powder micro-feeding based on image analysis

    09 Jun 2023 | Peer-reviewed journal | Contributor(s): Madarasz, L, Kote, AGyurkes, M, Farkas, A, Hambalko, B, Pataki, H, Fulop, G, Marosi, G, Lengyel, L, Casian, T, Csorba, K, Nagy, ZK

    The present paper reports the first monitoring and control of ultra-low dose powder feeding using a camera image-based mass flow measurement system. Caffeine was fed via a single-screw microfeeder as a model active pharmaceutical ingredient (API). The mass, mass flow and sizes of the particles...

  18. Using a material property library to find surrogate materials for pharmaceutical process development

    09 Jun 2023 | Peer-reviewed journal | Contributor(s): Escotet-Espinoza, MS, Moghtadernejad, SScicolone, J, Wang, YF, Pereira, G, Schafer, E, Vigh, T, Klingeleers, D, Ierapetritou, M, Muzzio, FJ

    Material properties are known to have a significant impact on pharmaceutical manufacturing performance, particularly for solid product processes. Evaluating the performance of a specific material, for example an active pharmaceutical ingredient or excipient, is critical during development stages...

  19. Using residence time distribution in pharmaceutical solid dose manufacturing–A critical review

    09 Jun 2023 | Peer-reviewed journal | Contributor(s): Bhalode, Pooja, Tian, Huayu Gupta, Shashwat Razavi, Sonia M Roman-Ospino, Andres Talebian, Shahrzad Singh, Ravendra Scicolone, James V Muzzio, Fernando J, Ierapetritou, Marianthi

    While continuous manufacturing (CM) of pharmaceutical solid-based drug products has been shown to be advantageous for improving the product quality and process efficiency in alignment with FDA’s support of the quality-by-design paradigm (Lee, 2015; Ierapetritou et al., 2016; Plumb, 2005; Schaber,...

  20. Using online mass spectrometry to predict the end point during drying of pharmaceutical products

    09 Jun 2023 | Peer-reviewed journal | Contributor(s): Dodda, Aditya G., Saranteas, Kostas, Henson, Michael A.

    Drying of active pharmaceutical ingredients (APIs) is an energy-intensive process that is often a manufacturing bottleneck due to the relatively long processing times. A key objective is the ability to determine the drying end point, the time at which all solvent has been evaporated from the...

  21. Using residence time distribution in pharmaceutical solid dose manufacturing–A critical review

    09 Jun 2023 | Peer-reviewed journal | Contributor(s): Bhalode, Pooja, Tian, Huayu Gupta, Shashwat Razavi, Sonia M Roman-Ospino, Andres Talebian, Shahrzad Singh, Ravendra Scicolone, James V Muzzio, Fernando J, Ierapetritou, Marianthi

    While continuous manufacturing (CM) of pharmaceutical solid-based drug products has been shown to be advantageous for improving the product quality and process efficiency in alignment with FDA’s support of the quality-by-design paradigm (Lee, 2015; Ierapetritou et al., 2016; Plumb, 2005; Schaber,...

  22. Understanding API Static Drying with Hot Gas Flow: Design and Test of a Drying Rig Prototype and Drying Modeling Development

    09 Jun 2023 | Peer-reviewed journal | Contributor(s): Ottoboni, S, Coleman, SJSteven, C, Siddique, M, Fraissinet, M, Joannes, M, Laux, A, Barton, A, Firth, P, Price, CJ, Mulheran, PA

    Developing a continuous isolation process to produce a pure, dry, free-flowing active pharmaceutical ingredient (API) is the final barrier to the implementation of continuous end-to-end pharmaceutical manufacturing. Recent work has led to the development of continuous filtration and washing...

  23. Thin-Film Evaporator Model for Continuous Active Pharmaceutical Ingredient Manufacturing

    09 Jun 2023 | Peer-reviewed journal | Contributor(s): Lee, BW, Yin, KHSplaine, K, Roesch, B

    Thin-film evaporator (TFE) is a popular continuous distillation/evaporation technology for pharmaceutical and fine chemical industries and has several equipment and process configurations that make fundamental modeling approaches very challenging. Specifically, moving wipers and lack of fluid...

  24. The scope of PAT in real-time advanced control of tablet quality

    09 Jun 2023 | Peer-reviewed journal | Contributor(s): Singh, Ravendra, Ierapetritou, Marianthi, Ramachandran, Rohit

    Continuous pharmaceutical manufacturing together with process analytical technology (PAT) provides a suitable platform for automatic feed-forward/feed-back (FF/FB) control of the end product quality as desired by quality by design (QbD)-based efficient manufacturing. The precise control of the...

  25. The optimization of process analytical technology for the inline quantification of multiple drugs in fixed dose combinations during continuous processing

    09 Jun 2023 | Peer-reviewed journal | Contributor(s): Dadou, SM, Tian, YWLi, S, Jones, DS, Andrews, GP

    Complications associated with uncontrolled hypertension are considered the major cause of premature death worldwide. Fixed-dose combinations (FDCs) offer an alternative approach to polypharmacy with the aim to improve patient compliance. Process Analytical Technology (PAT) is gaining momentum as...