Skip to main content
3.145.9.51

Resources: All

Find a resource
  1. processanalyticaltechnology x
  2. modeling x
  3. control x
  4. processcontrol x
  5. continuouspharmaceuticalmanufacturing x
  1. The role of digital twins in driving sustainability

    29 Oct 2024 | Peer-reviewed journal | Contributor(s): Deborah McElhone, Barrie Cassey, Kamal Abu-Hassan

    As the pharmaceutical sector endeavours to become more sustainable, we hear how digital twins – virtual replicas of systems or products that can help predict performance – are supporting the industry in its efforts.

  2. A modeling and control framework for extraction processes

    05 Sep 2024 | Peer-reviewed journal | Contributor(s): Peter Neugebauer, Jakob Rehrl, Peter Poechlauer, Dirk Kirschneck, Martin Horn, Martin Steinberger, Stephan Sacher, Joscha Boehm, Daniel Moser

    Many continuously operated pharmaceutical process routes have been presented recently. Most of these cover the synthesis of the active pharmaceutical ingredient (API) or solid dosage processing. However, the API purification is also gaining attraction. One widespread and waste-intensive unit...

  3. The Rise of Continuous Manufacturing in Pharma

    13 Aug 2024 | Website | Contributor(s): Editorial Team

    "Mr Indu Bhushan, CEO and Director of STEERLife shares his insights on the transformative journey of continuous manufacturing, and the advanced technologies that have propelled this paradigm shift. He also throws light on how continuous manufacturing has accelerated drug development...

  4. Continuous Manufacturing in the Pharmaceutical Industry: Enhancing Drug Production

    23 Jul 2024 | Website | Contributor(s): Timmerman, Siebe

    A significant shift towards continuous manufacturing (CM) is currently underway in the pharmaceutical industry. Unlike the more commonly used batch processing, CM operates continuously. This method potentially offers increased efficiency, agility, and flexibility in the manufacturing of drug...

  5. Process Intensification via End-to-End Continuous Manufacturing of Atorvastatin Calcium Using an Integrated, Modular Reaction-Crystallization-Spherical Agglomeration-Filtration-Drying Process

    23 Jul 2024 | Peer-reviewed journal | Contributor(s): Parvaresh, Rojan, Nagy, Zoltan K.

    Continuous manufacturing can show potential benefits over batch processing in lower turnaround times and smaller footprint in addition to higher productivity, adaptability, and consistent product quality. Although these possible benefits exist, there are also challenges in integrating the various...

  6. Development of a Continuous Flow Grignard Reaction to Manufacture a Key Intermediate of Ipatasertib

    25 Jun 2024 | Peer-reviewed journal | Contributor(s): Kaldre, Dainis, Stocker, Severin, Linder, David, Reymond, Helena, Schuster, Andreas, Lamerz, Jens, Hildbrand, Stefan, Püntener, Kurt, Berry, Malcolm, Sedelmeier, Jörg

    This article outlines the development of a continuous flow process for the manufacture of a key intermediate of the active pharmaceutical ingredient ipatasertib for the treatment of metastatic castration-resistant prostate cancer and triple-negative metastatic breast cancer. The reaction sequence...

  7. Development and Application of Control Concepts for Twin-Screw Wet Granulation in the ConsiGmaTM-25: Part 2 Granule Size

    04 Jun 2024 | Peer-reviewed journal | Contributor(s): Selma Celikovic, Johannes Poms, Johannes Khinast, Martin Horn, Jakob Rehrl

    Traditional operation modes, such as running the production processes at constant process settings or within a narrow design space, do not fully exploit the advantages of continuous pharmaceutical manufacturing. Integrating Quality by Control (QbC) algorithms as a standard component of...

  8. Innovation and Continuous Improvement in Pharmaceutical Manufacturing

    28 Mar 2024 | Document | Contributor(s): Ajaz Hussain (Chairperson) Raafat Fahmy (CVM), William Bargo (CVM), Robert Coleman, Robert (ORA), Elise Murphy (ORA), Frank Holcombe Jr (CDER), Chris Watts (CDER), See Lam (CDER), Jon Clark (CDER), Christopher Joneckis (CBER), John Dietrick (CDER), Diana Kolaitis (ORA), Vilayat Sayeed (CDER), Mai Huynh (CVM), Norman Schmuff (CDER), Andrew Chang (CBER)

    The PAT Team and Manufacturing Science Working Group Report: A Summary of Learning, Contributions and Proposed Next Steps for Moving towards the "Desired State" of Pharmaceutical Manufacturing in the 21st Century

  9. A Perspective on Quality by Design: A Preclinical Opportunity

    28 Mar 2024 | Document | Contributor(s): Ajaz S. Hussain

  10. A Shared Vision for Pharmaceutical Development and Manufacturing in the 21st Century: Contributions of the PAT Initiative

    28 Mar 2024 | Document | Contributor(s): Ajaz S. Hussain

  11. The Subcommittee on Process Analytical Technologies (PAT): Closing Remarks

    28 Mar 2024 | Document | Contributor(s): Ajaz S. Hussain

  12. The Process Analytical Technology Initiative: PAT and the Pharmacopeias

    28 Mar 2024 | Document | Contributor(s): Ajaz S. Hussain

    The PAT Initiative A part of the Pharmaceutical Quality for the 21st Century Initiative  PAT and the USP Opportunities for the USP to support the PAT Framework

  13. Utilizing PAT to Monitor and Control Bulk Biotech Processes

    27 Mar 2024 | Document | Contributor(s): Rick E. Cooley

    1.What is and isn’t PAT? 2.Implementing PAT in Manufacturing: What does it take? 3.Characteristics of bulk, biotech API processes 4.Why PAT? 5.Review of PAT technologies utilized 6.PAT application examples

  14. Compact NMR Spectroscopy for Automated Continuous-Flow Production of Chemicals and Pharmaceuticals (On-Demand)

    31 Jan 2024 | Seminars | Contributor(s): Klas Meyer

    Chemical companies are under constant pressure to improve productivity while cutting costs. Flexible and modular chemical plants can produce high-quality products using multi-purpose equipment with short downtimes, reducing time to market for new products. Intensified continuous production...

  15. Continuous Manufacturing for Pharmaceutical Solid Dosage Forms (On-Demand)

    31 Jan 2024 | Seminars | Contributor(s): Atul Dubey, Fernando Muzzio, Gerardo Callegari, Lucy L. Botros, Ravendra Singh, James Scicolone, Andres Roman, Sonia Modarres Razavi

    Course Description: This self-paced curriculum contains fourteen self-paced modules and three recordings of live virtual education on Pharmaceutical Continuous Manufacturing (PCM). Learners will have access to the following: A recording of the introductory session covering topics such as...

  16. MOOC I Control Strategy - Process Control

    29 Nov 2023 | Teaching Materials | Contributor(s): RCPE

  17. MOOC I Control Strategy - Examples

    29 Nov 2023 | Teaching Materials | Contributor(s): RCPE

  18. MOOC I Control Strategy - Introduction

    29 Nov 2023 | Teaching Materials | Contributor(s): RCPE

  19. MOOC I Control Strategy - Quality Control

    29 Nov 2023 | Teaching Materials | Contributor(s): RCPE

  20. Videometric mass flow control: A new method for real-time measurement and feedback control of powder micro-feeding based on image analysis

    09 Jun 2023 | Peer-reviewed journal | Contributor(s): Madarasz, L, Kote, AGyurkes, M, Farkas, A, Hambalko, B, Pataki, H, Fulop, G, Marosi, G, Lengyel, L, Casian, T, Csorba, K, Nagy, ZK

    The present paper reports the first monitoring and control of ultra-low dose powder feeding using a camera image-based mass flow measurement system. Caffeine was fed via a single-screw microfeeder as a model active pharmaceutical ingredient (API). The mass, mass flow and sizes of the particles...

  21. Videometric mass flow control: A new method for real-time measurement and feedback control of powder micro-feeding based on image analysis

    09 Jun 2023 | Peer-reviewed journal | Contributor(s): Madarasz, L, Kote, AGyurkes, M, Farkas, A, Hambalko, B, Pataki, H, Fulop, G, Marosi, G, Lengyel, L, Casian, T, Csorba, K, Nagy, ZK

    The present paper reports the first monitoring and control of ultra-low dose powder feeding using a camera image-based mass flow measurement system. Caffeine was fed via a single-screw microfeeder as a model active pharmaceutical ingredient (API). The mass, mass flow and sizes of the particles...

  22. Why We Need Continuous Pharmaceutical Manufacturing and How to Make It Happen

    09 Jun 2023 | Peer-reviewed journal | Contributor(s): Clive Badman, Charles L.Cooney, Alastair Florence, Konstantin Konstantinov, Markus Krumme, Salvatore Mascia, Moheb Nasr, Bernhardt L. Trout

    We make the case for why continuous pharmaceutical manufacturing is essential, what the barriers are, and how to overcome them. To overcome them, government action is needed in terms of tax incentives or regulatory incentives that affect time.

  23. Using a material property library to find surrogate materials for pharmaceutical process development

    09 Jun 2023 | Peer-reviewed journal | Contributor(s): Escotet-Espinoza, MS, Moghtadernejad, SScicolone, J, Wang, YF, Pereira, G, Schafer, E, Vigh, T, Klingeleers, D, Ierapetritou, M, Muzzio, FJ

    Material properties are known to have a significant impact on pharmaceutical manufacturing performance, particularly for solid product processes. Evaluating the performance of a specific material, for example an active pharmaceutical ingredient or excipient, is critical during development stages...

  24. Using residence time distribution in pharmaceutical solid dose manufacturing–A critical review

    09 Jun 2023 | Peer-reviewed journal | Contributor(s): Bhalode, Pooja, Tian, Huayu Gupta, Shashwat Razavi, Sonia M Roman-Ospino, Andres Talebian, Shahrzad Singh, Ravendra Scicolone, James V Muzzio, Fernando J, Ierapetritou, Marianthi

    While continuous manufacturing (CM) of pharmaceutical solid-based drug products has been shown to be advantageous for improving the product quality and process efficiency in alignment with FDA’s support of the quality-by-design paradigm (Lee, 2015; Ierapetritou et al., 2016; Plumb, 2005; Schaber,...

  25. Using online mass spectrometry to predict the end point during drying of pharmaceutical products

    09 Jun 2023 | Peer-reviewed journal | Contributor(s): Dodda, Aditya G., Saranteas, Kostas, Henson, Michael A.

    Drying of active pharmaceutical ingredients (APIs) is an energy-intensive process that is often a manufacturing bottleneck due to the relatively long processing times. A key objective is the ability to determine the drying end point, the time at which all solvent has been evaporated from the...