Skip to main content
Prepare for an exciting September! Each week, we'll examine the latest trends in PAT, offering fresh insights straight from recent conferences. Your perspective matters, so we encourage you to share your thoughts as well. Stay informed, stay engaged, and let's explore these cutting-edge developments together. https://bit.ly/3Xw0X7k
18.116.50.234

Resources: All

Find a resource
  1. flowchemistry x
  2. continuousprocessing x
  3. reviewarticle x
  1. Critical review on the role of excipient properties in pharmaceutical powder-to-tablet continuous manufacturing

    13 Aug 2024 | Peer-reviewed journal | Contributor(s): Sara Fathollahi, Pauline H. M. Janssen, Bastiaan H. J. Dickhoff, Henderik W. Frijlink

    The pharmaceutical industry is gradually changing batch-wise manufacturing processes to continuous manufacturing processes, due to the advantages it has to offer. The final product quality and process efficiency of continuous manufacturing processes is among others impacted by the properties of...

  2. Process intensification of pharmaceutical powder blending at commercial throughputs by utilizing semi-continuous mini-blending

    13 Aug 2024 | Peer-reviewed journal | Contributor(s): Maarten Jaspers, Florian Tegel, Timo P. Roelofs, Fabian Starsich, Yunfei Li Song, Bernhard Meir, Richard Elkes, Bastiaan H.J. Dickhoff

    Process intensification involves the miniaturization of equipment while retaining process throughput and performance. The pharmaceutical industry can benefit from this approach especially during drug product development, where the availability of active pharmaceutical ingredients (API) is often...

  3. Process analytics for the new era of continuous RNA manufacturing

    23 Jul 2024 | Website | Contributor(s): Botonjic-Sehic, Edita

    In this article, Edita Botonjic-Sehic, Head of Process Analytics and Data Science at ReciBioPharm, examines the need for a digitally controlled continuous manufacturing process to correct the shortcomings of the current standard of batch processing. She highlights the critical role in-line...

  4. Continuous Flow Intensification for the Synthesis of High-Purity Warfarin

    10 May 2024 | Peer-reviewed journal | Contributor(s): Silva-Brenes, Diana V., Reyes-Vargas, Stephanie K., Duconge, Jorge, Vlaar, Cornelis, Stelzer, Torsten, Monbaliu, Jean-Christophe M.

    While racemic warfarin was initially commercialized as a rodenticide, it has become the most prescribed anticoagulant drug for prevention of blood clots and is part of the World Health Organization’s list of essential medicines. The synthesis of warfarin appears straightforward, consisting of a...

  5. Rapid production of the anaesthetic mepivacaine through continuous, portable technology

    24 Apr 2024 | Peer-reviewed journal | Contributor(s): Díaz-Kruik, Pablo, Paradisi, Francesca

    Local anaesthetics such as mepivacaine are key molecules in the medical sector, so ensuring their supply chain is crucial for every health care system. Rapid production of mepivacaine from readily available commercial reagents and (non-dry) solvents under safe conditions using portable,...

  6. Multi-step Flow Synthesis of the Anthelmintic Drug Praziquantel

    24 Apr 2024 | Peer-reviewed journal | Contributor(s): Phull, Manjinder Singh, Bohara, Chander Singh, Gundla, Rambabu, Mainkar, Prathama S., Jadav, Surender Singh

    Praziquantel (PZQ; Brand name: Biltricide) is categorized as an anthelminthic drug, and it is used for the treatment of Schistosomiasis and other parasitic infections. The World Health Organization (WHO) has classified it as one of the essential and emergency medicines needed across the globe....

  7. Continuous Flow-Facilitated CB2 Agonist Synthesis, Part 2: Cyclization, Chlorination, and Amination

    24 Apr 2024 | Peer-reviewed journal | Contributor(s): Prieschl, Michael, Sagmeister, Peter, Moessner, Christian, Sedelmeier, Joerg, Williams, Jason D., Kappe, C. Oliver

    A new route to the cannabinoid receptor type 2 agonist, RG7774, has been developed circumventing an alkylation with poor regioselectivity as the final step. In the new synthetic route, this side chain is incorporated from the beginning. In this article, the development of the final four...

  8. A Continuous Process for Manufacturing Apremilast. Part I: Process Development and Intensification by Utilizing Flow Chemistry Principles

    24 Apr 2024 | Peer-reviewed journal | Contributor(s): Hsieh, Hsiao-Wu, Griffin, Daniel J., Ananthoji, Padmini, Avci, Nadide Hazal, Brown, Derek B., Ericson, Ari, Fostinis, James D., Irfan, Muhammad, Langille, Neil, Lovette, Michael A., Murray, James I., Spada, Simone, Thiel, Oliver R., Aiello, Frankie, Daou, Joseph, Goudas-Salomon, Nicole, Pan, Ende, Sarkar, Nandini, Wimalasinghe, Rasangi, Wu, Zufan Steven, Zeng, Alicia, Beaver, Matthew G., Cohen, Carolyn M.

    Herein, we report the development of an integrated continuous manufacturing (CM) process for the penultimate step in the synthesis of apremilast, the drug substance (DS) of the commercial product Otezla. This development effort was motivated by the desire to create an alternative manufacturing...

  9. Using Residence Time Distributions (RTDs) to Address the Traceability of Raw Materials in Continuous Pharmaceutical Manufacturing

    09 Jun 2023 | Peer-reviewed journal | Contributor(s): Engisch, William, Muzzio, Fernando

    Continuous processing in pharmaceutical manufacturing is a relatively new approach that has generated significant attention. While it has been used for decades in other industries, showing significant advantages, the pharmaceutical industry has been slow in its adoption of continuous processing,...

  10. Using residence time distribution in pharmaceutical solid dose manufacturing–A critical review

    09 Jun 2023 | Peer-reviewed journal | Contributor(s): Bhalode, Pooja, Tian, Huayu Gupta, Shashwat Razavi, Sonia M Roman-Ospino, Andres Talebian, Shahrzad Singh, Ravendra Scicolone, James V Muzzio, Fernando J, Ierapetritou, Marianthi

    While continuous manufacturing (CM) of pharmaceutical solid-based drug products has been shown to be advantageous for improving the product quality and process efficiency in alignment with FDA’s support of the quality-by-design paradigm (Lee, 2015; Ierapetritou et al., 2016; Plumb, 2005; Schaber,...

  11. Twin-screw melt granulation: Current progress and challenges

    09 Jun 2023 | Peer-reviewed journal | Contributor(s): Kittikunakorn, Nada, Liu, Tongzhou, Zhang, Feng

    Twin-screw melt granulation (TSMG) is a new alternative method for granulation that offers several advantages over wet and dry granulation methods. TSMG has rapidly gained interest over recent years in the pharmaceutical industry. Since it is an inherently continuous process with controlled...

  12. Twin screw granulation - review of current progress

    09 Jun 2023 | Peer-reviewed journal | Contributor(s): Thompson, M. R.

    Twin screw granulation (TSG) is a new process of interest to the pharmaceutical community that can continuously wet granulate powders, doing so at lower liquid concentrations and with better product consistency than found by a high shear batch mixer. A considerable body of Research Article has...

  13. Towards 4th industrial revolution efficient and sustainable continuous flow manufacturing of active pharmaceutical ingredients

    09 Jun 2023 | Peer-reviewed journal | Contributor(s): Sagandira, CR, Nqeketo, SMhlana, K, Sonti, T, Gaqa, S, Watts, P

    Continuous flow chemistry has opened a new paradigm in both the laboratory and pharmaceutical industry. This review details the recently reported literature on continuous multistep telescoped synthesis of active pharmaceutical ingredients (APIs), inline flow downstream processing, in-process...

  14. Towards a Greener Pharmacy by More Eco Design

    09 Jun 2023 | Peer-reviewed journal | Contributor(s): Baron, M

    This review proposes an overview of the main trends explored by the pharmaceutical industry in order to develop a greener and smarter pharmacy minimizing any negative impact to the environment, and using more sustainable processes and drugs. If many drugs have their origin in nature, many active...

  15. The synthesis of active pharmaceutical ingredients (APIs) using continuous flow chemistry

    09 Jun 2023 | Peer-reviewed journal | Contributor(s): Baumann, M, Baxendale, IR

    The implementation of continuous flow processing as a key enabling technology has transformed the way we conduct chemistry and has expanded our synthetic capabilities. As a result many new preparative routes have been designed towards commercially relevant drug compounds achieving more efficient...

  16. The Use of PAT and Off-line Methods for Monitoring of Roller Compacted Ribbon and Granule Properties with a View to Continuous Processing

    09 Jun 2023 | Peer-reviewed journal | Contributor(s): McAuliffe M.A.P., Omahony G.E., Blackshields C.A., Collins J.A., Egan D.P., Kiernan L., Oneill E., Lenihan S., Walker G.M., Crean A.M.

    Real-time process monitoring using process analytical technology (PAT) tools can augment process understanding, enable improved process control, and hence facilitate the production of high-quality pharmaceutical products. While beneficial for batch processes, the availability of PAT tools to...

  17. The reality of in-line tablet coating

    09 Jun 2023 | Peer-reviewed journal | Contributor(s): Cahyadi, Christine, Chan, Lai Wah, Heng, Paul Wan Sia

    The possibility of continuous processing in pharmaceutical tablet manufacturing is hampered by the viscoelastic recovery of tablets post-compaction. Compacted tablets are typically aged before coating to allow complete viscoelastic recovery so as to avoid subsequent coating defects. There has...

  18. The Evolving State of Continuous Processing in Pharmaceutical API Manufacturing: A Survey of Pharmaceutical Companies and Contract Manufacturing Organizations

    09 Jun 2023 | Peer-reviewed journal | Contributor(s): McWilliams, JC, Allian, ADOpalka, SM, May, SA, Journet, M, Braden, TM

    This manuscript provides the results of an in-depth survey assessment of the capabilities, experience, and perspectives on continuous processing in the pharmaceutical sector, with respondents from both pharmaceutical companies and Contract Manufacturing Organizations (CMOs). The survey includes...

  19. The Future of Pharmaceutical Manufacturing Sciences

    09 Jun 2023 | Peer-reviewed journal | Contributor(s): Rantanen, Jukka, Khinast Johannes

    The entire pharmaceutical sector is in an urgent need of both innovative technological solutions and fundamental scientific work, enabling the production of highly engineered drug products. Commercial-scale manufacturing of complex drug delivery systems (DDSs) using the existing technologies is...

  20. Template-induced nucleation for controlling crystal polymorphism: from molecular mechanisms to applications in pharmaceutical processing

    09 Jun 2023 | Peer-reviewed journal | Contributor(s): Parambil, JV, Poornachary, SKHeng, JYY, Tan, RBH

    Over the last two decades, the use of template surfaces to induce heterogeneous crystal nucleation has been explored primarily to address two different goals: first, as an alternative to the conventional seeding technique used for polymorph control and, second, as a technique to promote the...

  21. The Changing Face of Process Development & Chemical Manufacturing - A View from the Regulators on Continuous Manufacturing

    09 Jun 2023 | Website | Contributor(s): Wiles, Charolotte

    Industry wide there is a drive for resource efficiency and flexibility, to adapt quickly in what is increasingly becoming a volatile, changing marketplace. As the ‘patent cliff’ looms for many high-volume API’s, there is also a shift away from blockbusters towards lower volume, higher potency...

  22. The Concept of Chemical Generators: On-Site On-Demand Production of Hazardous Reagents in Continuous Flow

    09 Jun 2023 | Peer-reviewed journal | Contributor(s): Dallinger, D, Gutmann, B, Kappe, CO

    CONSPECTUS: In recent years, a steadily growing number of chemists, from both academia and industry, have dedicated their Research Article to the development of continuous flow processes performed in milli- or microreactors. The common availability of continuous flow equipment at virtually all...

  23. Small-Volume Continuous Manufacturing of Merestinib. Part 1. Process Development and Demonstration

    09 Jun 2023 | Peer-reviewed journal | Contributor(s): Cole, KP, Reizman, BJHess, M, Groh, JM, Laurila, ME, Cope, RF, Campbell, BM, Forst, MB, Burt, JL, Maloney, TD, Johnson, MD, Mitchell, D, Polster, CS, Mitra, AW, Boukerche, M, Conder, EW, Braden, TM, Miller, RD, Heller, MR, Phillips, JL, Howell, JR

    Development of a small volume continuous process that used a combination of batch and flow unit operations to manufacture the small molecule oncolytic candidate merestinib is described. Continuous processing was enabled following the identification and development of suitable chemical...

  24. Small-Volume Continuous Manufacturing of Merestinib. Part 2.Technology Transfer and cGMP Manufacturing

    09 Jun 2023 | Peer-reviewed journal | Contributor(s): Reizman, Brandon J., Hess, Molly, Burt, Justin L., Maloney, Todd D., Johnson, Martin D., Laurila, Michael E., Cope, Richard F., Luciani, Carla V., Buser, Jonas Y., Campbell, Bradley M., Forst, Mindy B., Mitchell, David, Braden, Timothy M., Lippelt, Christopher K., Boukerche, Moussa, Starkey, Derek R., Miller, Richard D., Chen, Jing, Sun, Baoquan, Kwok, Martin, Zhang, Xin, Tadayon, Sam, Huang, Ping

    Technology transfer of a small volume continuous (SVC) process and Current Good Manufacturing Practices (cGMP) manufacturing of merestinib are described. A hybrid batch-SVC campaign was completed at a contract manufacturing organization under cGMP. The decision process by which unit operations...

  25. Small-Volume Continuous Manufacturing of Merestinib. Part 1. Process Development and Demonstration

    09 Jun 2023 | Peer-reviewed journal | Contributor(s): Cole, KP, Reizman, BJHess, M, Groh, JM, Laurila, ME, Cope, RF, Campbell, BM, Forst, MB, Burt, JL, Maloney, TD, Johnson, MD, Mitchell, D, Polster, CS, Mitra, AW, Boukerche, M, Conder, EW, Braden, TM, Miller, RD, Heller, MR, Phillips, JL, Howell, JR

    Development of a small volume continuous process that used a combination of batch and flow unit operations to manufacture the small molecule oncolytic candidate merestinib is described. Continuous processing was enabled following the identification and development of suitable chemical...